簡易檢索 / 詳目顯示

研究生: 徐晟旼
Hsu, Sheng-Min
論文名稱: 基於相似度點對點殭屍網路偵測演算法的跨域網路流分析
A Similarity-based P2P Botnet Detection Algorithm for Inter-Domain NetFlow Analysis
指導教授: 謝錫堃
Shieh, Ce-Kuen
共同指導教授: 張志標
Chang, Jyh-Biau
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電腦與通信工程研究所
Institute of Computer & Communication Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 30
中文關鍵詞: 點對點殭屍網路跨網域非監督式機器學習MapReduce 架構網路流
外文關鍵詞: P2P Botnet, Inter-domain, Unsupervised learning, MapReduce Framwork, NetFlow
相關次數: 點閱:127下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,點對點殭屍網路被用於多種的網路犯罪。雖然有許多偵測點對點殭屍網路的研究,但這些研究大部分是針對單一網域的網路流量進行分析,我們認為僅對單一網域流量作分析是不夠的,原因在於點對點殭屍網路通常分布在多個網域,若能作跨網域分析,將能提高點對點殭屍網路的偵測率。
    在本篇研究,我們提出一個可以作跨域網路流分析的點對點殭屍網路偵測演算法,演算法的第一階段先作單一網域的分析,第二階段再作跨網域分析。使用真實世界網路流量的實驗結果顯示跨域網路流分析是可行的,透過VirusTotal的資料庫驗證,我們的準確率至少在80%以上。

    Recently, peer-to-peer (P2P) botnets have been adopted for a variety of cyber-crimes. Many approaches for P2P botnet detections had studied, but most of them are based on a single domain traffic to analyze bot activities. It seems hard to recognize the malicious activities from a single domain traffic, especially for P2P botnets that often scattered across the Internet to exchange information.
    In this paper, we propose an innovative P2P botnet detection algorithm to federate multiple sites to inter-domain traffic analysis. Our algorithm first extracts traffic as feature vectors, and then run a cooperative graph-based algorithm across multiple domains to improve precision. We believe our P2P botnet detection can solve well-known and unknown botnets. Evaluation based on real traffic journal shows the availability of our approach, and the verification was given using VirusTotal to validate the outcomes correctness which at least 80 percentage malicious IPs appeared on it.

    Chapter 1 : Introduction 1 Chapter 2 : Backgrounds 3 2.1 Botnet 3 2.2 MapReduce Programming Model 4 2.3 Federated MapReduce 4 2.4 SimRank 5 Chapter 3 : Related Works 6 3.1 Botnet detection via mining of traffic flow characteristics 6 3.2 Malware Traffic Detection using Tamper Resistant Features 6 3.3 PeerClean 7 3.4 Traffic Classification for botnet detection 7 3.5 PeerFox 8 Chapter 4 : Methodology 10 4.1 Overview 10 4.2 First stage 11 4.2.1 Session Extraction 11 4.2.2 Feature Vectors Definition 12 4.2.3 Filter 14 4.2.4 Grouping 15 4.3 Second stage 18 4.3.1 Group Distributor & Similarity Relationship Graph 18 4.3.2 Ranking & Association 19 Chapter 5 : Evaluation 21 5.1 Network Traces 21 5.2 Environment 22 5.3 Evaluation method 23 5.4 Experiment Results 24 5.4.1 Experiment 1 24 5.4.2 Experiment 2 25 5.4.3 Experiment 3 26 Chapter 6 : Conclusion and Future Work 28 Chapter 7 : References 29

    [1] Wang, Ping, Sherri Sparks, and Cliff C. Zou. "An Advanced Hybrid Peer-to-Peer Botnet." IEEE Transactions on Dependable and Secure Computing 7.2 (2010): 113.
    [2] Feily, Maryam, Alireza Shahrestani, and Sureswaran Ramadass. "A survey of botnet and botnet detection." 2009 Third International Conference on Emerging Security Information, Systems and Technologies. IEEE, 2009.
    [3] Chandola, Varun, Arindam Banerjee, and Vipin Kumar. "Anomaly detection: A survey." ACM computing surveys (CSUR) 41.3 (2009): 15.
    [4] Zhang, Junjie, et al. "Building a scalable system for stealthy p2p-botnet detection." IEEE transactions on information forensics and security 9.1 (2014): 27-38.
    [5] Wang, Chun-Yu, et al. "Federated MapReduce to transparently run applications on multicluster environment." 2014 IEEE International Congress on Big Data. IEEE, 2014.
    [6] Jeh, Glen, and Jennifer Widom. "SimRank: a measure of structural-context similarity." Proceedings of the eighth ACM SIGKDD international conference on Knowledge discovery and data mining. ACM, 2002.
    [7] Kirubavathi, G., and R. Anitha. "Botnet detection via mining of traffic flow characteristics." Computers & Electrical Engineering 50 (2016): 91-101.
    [8] Celik, Z. Berkay, et al. "Malware traffic detection using tamper resistant features." Military Communications Conference, MILCOM 2015-2015 IEEE. IEEE, 2015.
    [9] Yan, Qiben, et al. "PeerClean: Unveiling peer-to-peer botnets through dynamic group behavior analysis." 2015 IEEE Conference on Computer Communications (INFOCOM). IEEE, 2015.
    [10] Stevanovic, Matija, and Jens Myrup Pedersen. "An analysis of network traffic classification for botnet detection." Cyber Situational Awareness, Data Analytics and Assessment (CyberSA), 2015 International Conference on. IEEE, 2015.
    [11] Dave, Mayank. "PeerFox: Detecting parasite P2P botnets in their waiting stage." Signal Processing, Computing and Control (ISPCC), 2015 International Conference on. IEEE, 2015.
    [12] TcpInitialRTT, https://technet.microsoft.com/en-us/library/cc938207.aspx
    [13] TcpMaxConnectRetransmissions,
    https://technet.microsoft.com/en-us/library/cc938209.aspx
    [14] DNS Clients and Timeouts,
    http://blogs.technet.com/b/stdqry/archive/2011/12/15/dns-clients-and-timeouts-part-2.aspx
    [15] Hall, Mark, et al. "The WEKA data mining software: an update." ACM SIGKDD explorations newsletter 11.1 (2009): 10-18.
    [16] Free and Public DNS Servers,
    http://pcsupport.about.com/od/tipstricks/a/free-public-dns-servers.htm
    [17] Alexa Top 500 sites on the web. http://www.alexa.com/topsites/global
    [18] Top Sites in Taiwan. http://www.alexa.com/topsites/countries/TW
    [19] VirusTotal, https://www.virustotal.com/

    無法下載圖示 校內:2021-07-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE