簡易檢索 / 詳目顯示

研究生: 劉鄭楷
Liu, Cheng-Kai
論文名稱: 染料摻雜液晶薄膜中利用光配向技術改變液晶預傾角之研究與應用
Study of variable liquid crystal pre-tilt angles generated by photoalignment technique in dye-doped liquid crystal films and its applications
指導教授: 傅永貴
Fuh, Y.G. Andy
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 137
中文關鍵詞: 液晶光配向預傾角
外文關鍵詞: liquid crystal, photoalignment, pre-tilt angle
相關次數: 點閱:120下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文研發可以在摻雜染料的液晶薄膜(DDLC)中,利用光配向的機制,來達成液晶預傾角控制的效果。
    照射一線性偏振光至一垂直配向的參雜偶氮染料液晶樣品後,偶氮染料甲基紅(Methyl Red, MR)受激發後會吸附在基板上;吸附量會隨著入射光的強度增強或是入射光照射時間變長而增加。當入射光的強度或是入射光照射時間到達某一個強度或是時間的時候,就會產生波紋結構(ripple structure),根據Berreman理論,波紋結構是提供水平配向力的來源,且波紋結構的深度也和照射強度或是照射時間成正比。固定強度的基板垂直配向力和會隨著照射強度和照射時間變化的水平配向力相互抗衡,由最終的合力來決定液晶的預傾角。最後垂直配向的液晶就會變成一個混合結構(hybrid structure),中間的液晶層則呈連續變化,從一端的垂直配向到另一端有一預傾角的水平配向。
    我們利用量測混合結構的穿透度和電壓曲線圖,再利用1D-Dimos套裝軟體所模擬出來的圖形做比對,來推測液晶的預傾角。
    利用這個技術,我們製作了一個pi-cell,量測並分析其反應速度。
    除此之外,這一個技術還有很多有潛力的應用,如製作全像光柵或者是可變焦液晶透鏡。

    This work demonstrates an approach to control the pre-tilt angle of liquid crystal using photoalignment technique in azo dye-doped liquid crystal (DDLC) films.
    By illuminating a homeotropic alignment DDLC sample with a linearly polarized laser beam, the excited dyes (Methyl Red, MR) are adsorbed onto the substrate. The quantity of the adsorbed dyes increases with the pumping beam intensity or illumination duration. The adsorbed dye may form a ripple texture when the illumination duration or intensity is long or strong enough. The amplitude of the ripple structure is proportional to the illumination duration or intensity. Based on the Berreman theory, the ripple structure provides a homogeneous alignment force, and the anchoring force is proportional to the amplitude of the ripple structure. The competition between the constant vertical alignment forces and variable homogeneous force due to the ripple structure determines the final pre-tilt angles of liquid crystals. Finally, a homeotropic alignment DDLC sample becomes a hybrid one, in which the alignment of liquid crystals is homeotropic on one substrate and homogeneous on the other substrate.
    We then measure the transmission versus voltage (T-V) curve of the formed hybrid LC cell. By comparing the measured T-V curve with that simulated using 1D-Dimos software, we can determine the pre-tilt angle of liquid crystals.
    Using this technique, we fabricate a pi-cell. The response times of the cell are measured and analyzed.
    Additionally, several potential applications, such as holographic grating, tunable
    liquid crystal lens, can be developed using the present approach.

    摘要…………………………………………………………………………………Ⅰ Abstract……………………………………………………………………………Ⅱ 目錄…………………………………………………………………………………Ⅲ 圖目錄………………………………………………………………………………Ⅶ 表目錄……………………………………………………………………………XV 第一章 簡介…………………………………………………………………………1 1.1 前言…………………………………………………………………………1 1.2 液晶簡介…………………………………………………………………………2 1.2.1 何謂液晶…………………………………………………………………2 1.2.2 液晶的分類………………………………………………………………3 1.2.2.1 熱致型液晶………………………………………………………………3 1.2.2.2 圓盤狀液晶(discotic liquid crystal)……………………………………11 1.3 液晶物理………………………………………………………………………13 1.3.1 (A)長條狀向列型液晶的折射率異向性……………………………………13 1.3.2 (B)液晶連續彈性體理論……………………………………………………15 1.3.3 (C)向列型液晶動態和電場關係……………………………………………17 1.3.4 (D)溫度對向列相液晶的影響……………………………………………….18 1.3.5 (E)與波長相關之液晶雙折射率……………………………………….……19 第二章 相關理論…………………………………………………………….……22 2.1 光引致分子轉向效應…………………………………………………………22 2.1.1 Jánossy對染料摻雜液晶所建立之模型……………………………22 2.1.2光引致薄膜中染料轉向液晶.…………………………………………25 2.1.3光激發之同素異構化反應 (Photoisomerization)……………………28 2.1.4 染料吸附引致液晶轉向之效應……………………………………30 2.1.5 染料的暗吸附………………………………………………………33 2.1.6 染料受光照射吸附於高分子表面引致液晶轉向…………………35 2.1.7 等溫相變……………………………………………………………36 2.2雷射引致之波紋結構與溝槽理論………………………………………………38 第三章 實驗準備與過程…………………………………………………………44 3.1 實驗樣品製作…………………………………………………………………44 3.1.1 材料介紹……………………………………………………………44 3.1.2 樣品製程………………………………………………………………47 3.2 配向的檢測……………………………………………………………………51 3.3 樣品微觀圖像觀察及結構分析儀器…………………………………………51 3.3.1 偏光顯微鏡(polarized optical microscope)……………………………51 3.3.2 環境掃描電子掃描顯微鏡(Enviromental Scanning Electron Microscope,簡稱ESEM)……………………………………………………………52 3.3.3 原子力顯微鏡(Atomic Force Microscope, 簡稱AFM)………………53 3.4 實驗裝置………………………………………………………………………55 3.4.1製作樣品的實驗架構圖………………………………………………55 3.4.2 T-V曲線量測組………………………………………………………56 3.4.3 1D-Dimos…………………………………………59 3.4.4 液晶盒厚度(Cell-Gap)的量測…………………………………………60 第四章 實驗結果與討論…………………………………………………………63 4.1 單一綠光對偶氮染的吸附關係……………………………………………63 4.2 未形成波紋結構前的染料吸附結構………………………………………65 4.3 波紋結構(ripple structure) …………………………………………………66 4.4 波紋結構的形態……………………………………………………………68 4.5 偶氮染料在高溫下的吸附情形……………………………………………70 4.6 偶氮染料分子的吸收軸和綠光偏振方向以及溫度的關係………………70 4.7 非照光面基板上結構的配向力……………………………………………72 4.8 實驗結果……………………………………………………………………72 4.8.1 實驗內容概要…………………………………………………………72 4.8.2 樣品和溫度的關係……………………………………………………73 4.8.2.1 樣品控溫在25 oC……………………………………………………73 4.8.2.2 將樣品加熱至66oC (E7的相變溫度略低於61oC)…………………75 4.8.3 相同照射時間,不同照射強度(樣品溫度控制在55 oC)………………77 4.8.3.1 討論……………………………………………………………………90 4.8.4 同照射強度,不同照射時間(樣品溫度控制在55 oC)…………………93 4.8.4.1 討論…………………………………………………………………100 4.9 結論…………………………………………………………………………103 第五章 應用………………………………………………………………………104 5.1 光學補償液晶彎曲模式(Optically Compensated Bend mode, 簡稱OCB mode)……………………………………………………………………104 5.1.1操作模式………………………………………………………………104 5.1.2 OCB模式的特性……………………………………………………106 5.1.3 轉態模式………………………………………………………………108 5.1.4 改變液晶預傾角………………………………………………………110 5.2 pi-cell (OCB mode) 在1D-Dimos上的模擬…………………………111 5.3 製作和驗證pi-cell和水平配向的樣品……………………………………112 5.4 反應速度的量測實驗裝置…………………………………………………116 5.5 pi-cell反應速度量測………………………………………………………117 5.6 為何pi-cell的反應速度會很慢……………………………………………118 5.7 結論…………………………………………………………………………123 第六章 未來展望…………………………………………………………………124 6.1 半反射半穿透液晶顯示器(transflective liquid crystal display)…………124 6.2 可電控變焦式透鏡…………………………………………………………125 參考文獻…………………………………………………………………………127 圖目錄 圖(1.2.2.1.1) 向列相(Nematics)長條狀向列相液晶分子排列示意圖[14,30]。….4 圖(1.2.2.1.2) 膽固醇液晶(cholesterics)分子排列方式[30]。………………………5 圖 (1.2.2.1.3) 近晶A相各層面之間的液晶分子排[30]。……………………8 圖 (1.2.2.1.4) (a)近晶C相液晶之分子排列;(b)近晶C相液晶之分子排列的立體 圖[30]。……………………………………………………………………9 圖 (1.2.2.1.5) 對乙氧基苯甲酸(p-ethoxybenzoic acid)的相變圖[30]。………10 圖 (1.2.2.1.6) (a) SmC*分子排列示意圖;(b) SmC*分子受電場均轉至同方向之示 意圖[30]。…………………………………………………………11 圖 (1.2.2.2.1) 數種圓盤狀液晶的化學結構圖[30]。…………………………12 圖 (1.2.2.2.2) (a)圓柱相圓盤狀液晶分子結構圖。(b)向列相圓盤狀液晶分子結構 圖[30]。…………………………………………………………13 圖(1.3.1) 正單光軸晶體之折射率橢圓球[33]。…………………………………14 圖(1.3.2) 液晶三種基本的彈性體理論結構示意圖[14,30]:(a)延展; (b)扭轉; (c)彎 曲。………………………………………………………………………16 圖(1.3.3.1) 上下基板均鍍有透明導電膜的液晶盒並外接一個電源[14]。……17 圖(1.3.3.2) 將電場E分解成和液晶導軸平行的分量 以及垂直的分量[14]。…18 圖(1.3.4) Yang等人製作之向列型液晶之尋常折射率、非尋常折射率和雙折射率 值與溫度之關係圖[14]。………………………………………………19 圖(1.3.5.1) Wu等人使用single band mode計算所得之液晶之雙折射率值與波長 之關係圖[32],實線為λ*等於200奈米時所畫之曲線圖;空心圓線為λ*等於270奈米時所畫之曲線圖。…………………………………20 圖(1.3.5.2) 空心矩形和空心圓形分別為Li等人做實驗所量測而得的液晶(E7)尋 常折射率(no)與非尋常折射率(ne),而實線曲線則是將所有量測數據代入式(1-3-5-2)後透過計算所得之液晶尋常折射率(no)與非尋常折射率(ne)與波長之關係圖[42]。…………………………………………21 圖 (2.1.2.1) Gibbons等人所繪的實驗架構圖[47]。………………………………26 圖 (2.1.2.2) Gibbons等人將(a)將照射後的液晶樣品放置於上下偏振片的穿透軸 互相垂直,且其中一片偏振片的穿透軸和摩擦配向方向平行的偏光顯微鏡上所拍攝的圖片;(b)將照射後的液晶樣品放置於上下偏振片穿透軸和摩擦配向方向平行的偏光顯微鏡上所拍攝的圖片[47]。…………………………………………26 圖 (2.1.2.3) Chao等人所繪之甲基橙在command surface上受干涉場而形成連續 旋轉分佈,再藉由甲基橙分子帶動液晶分子旋轉形成液晶於空間上連續旋轉分佈的相位光柵示意圖[48]。……………………………27 圖(2.1.3.1) 甲基紅化學結構圖[13,49]。…………………………………………28 圖(2.1.3.2) Sekkat 等人所繪之(a)偶氮苯分子的反式(trans)態異構體(isomer)和順 式(cis)態異構體之間的相互轉換( )。(b)氮苯分子的反式(trasn)態異構體(isomer)和順式(cis)態異構體狀態的簡化模型[50]。………28 圖(2.1.3.3) Crecca等人所繪之偶氮苯分子受光同素異構化反應後所產生結構變 化的示意圖[53]。………………………………………………………30 圖(2.1.4.1) Simoni 等人在1997年利用甲基紅摻雜液晶製作相位光柵的實驗圖 [54]。……………………………………………………………………31 圖(2.1.4.2) Simoni 等人所拍攝的液晶樣品在照射He-Cd雷射所產生的干涉場後 在偏光顯微鏡下的照片[54]。…………………………………………31 圖(2.1.6) (a)基板右半邊鍍上NOA81高分子薄膜層,左半邊未鍍上此高分子薄膜層而露出ITO薄膜層。(b) Huang等人所拍攝之在上下偏振片的穿透軸互相平行的偏光顯微鏡下所拍攝的樣品於(a)中綠光照射區域的顯微鏡照片[58]。…36 圖(2.1.7) Kurihara等人進行的偶氮苯摻雜液晶的等溫相變實驗結果[59]。……37 圖(2.2.1) Fuh等人所拍攝之雷射引致波紋結構在(a)比例尺50微米;(b)比例尺1 微米下的電子顯微鏡圖[62]。…………………………………………38 圖(2.2.2) Fuh等人所量測之雷射引致之波紋結構的原子力顯微鏡圖[62]。……39 圖(2.2.3) Lu等人所拍攝之在polyimide表面上所形成的雷射引致之波紋結構的 電子顯微鏡圖[68]。……………………………………………………41 圖(2.3.4) 波紋結構的3D圖形。…………………………………………………42 圖(2.3.5) 波紋結構的2D圖形。…………………………………………………42 圖(2.3.6) 圖(2.3.5)橘色線剖面圖。………………………………………………42 圖(3.1.1.1) 向列相液晶E7係由四種不同之液晶所組成[72]。………………45 圖(3.1.1.2) Lee等人所量測之甲基紅之吸收光譜[73]。實線曲線代表甲基紅分子全部處於trans態的吸收頻譜。虛線曲線代表甲基紅分子在照射藍綠光後,其處在cis態多於trans態下的吸收光譜。…………………46 圖(3.1.2) 空液晶盒製作。………………………………………………………50 圖(3.3.1) 用以觀察液晶是否為垂直配向的偏光顯微鏡結構示意圖。.…………52 圖(3.3.3) 原子力顯微鏡之基本結構示意圖圖[79]。……………………………54 圖(3.4.1.1) 製作樣品的實驗架構圖。……………………………………………55 圖(3.4.1.2) 照射綠光後形成的混合結構。………………………………………56 圖(3.4.2.1) T-V 曲線量測組的裝置圖。………………………………………57 圖(3.4.2.2) T-V曲線震盪圖形。…………………………………………………58 圖(3.4.3.1) 1D-Dimos的介面圖。…………………………………………………59 圖(3.4.3.2) 改變1D-Dimos的a角度變化。……………………………………60 圖(3.4.3.3) 1D-Dimos模擬出來的T-V曲線圖形。………………………………60 圖(3.4.4.1) Cell-Gap量測裝置圖。……………………………………………61 圖(3.4.4.2) 光譜儀的震盪圖形。…………………………………………………61 圖(4.1) 偶氮染料分子Methyl Red在吸收光前後的形態[50]。…………………63 圖(4.2.1) 染料以顆粒狀吸附在基板上且尚未形成波紋結構的示意圖,由實驗得知,顆粒直徑大約為200 nm)。…………………………………………65 圖(4.2.2) DMOAP及顆粒狀染料吸附對液晶配向力之示意圖。………………66 圖(4.3) (1~4)表示照射的綠光強度愈強或照射時間愈久,液晶的預傾角愈大。68 圖(4.4) 波紋結構在同樣強度下但照射時間不同的形態示意圖。………………70 圖(4.6.1) 當入射光偏振方向和染料長軸平行時有最大吸收,而和染料長軸垂直 時有最小吸收[13,14,42]。………………………………………………71 圖(4.6.2) 在25oC下,液晶是垂直排列狀態,染料也跟著液晶成垂直排列,此時綠光的偏振方向和染料成垂直,吸收比例很低,染料不容易被激發。…71 圖(4.6.3) 有控溫在55 oC下偶氮染料分子的長軸和光場偏振方向的示意圖,可以發現吸收軸和光場偏振方向更平行,吸收更大。………………………72 圖(4.8.2.1) 控制在不同溫度的樣品在照射綠光後在偏光顯微鏡下的照片。虛線標示的部分(A, C)控溫在25 oC;沒有虛線標示的部分(B, D)控溫在55 oC。…74 圖(4.8.2.2) 控制在不同溫度的樣品在照射綠光後在偏光顯微鏡下的照片。虛線標示的部分(A, C)為控溫在66 oC;沒有虛線標示的部分(B, D)控溫在55 oC。76 圖(4.8.3.a) 照射強度283 mW/cm2,照射時間為5分鐘的圖形。………………78 圖(4.8.3.b) 照射強度283 mW/cm2,照射時間為10分鐘的圖形。……………79 圖(4.8.3.c) 照射強度283 mW/cm2,照射時間為15分鐘的圖形。……………80 圖(4.8.3.d) 照射強度283 mW/cm2,照射時間為20分鐘的圖形。……………81 圖(4.8.3.e) 照射強度283 mW/cm2,照射時間為25分鐘的圖形。……………82 圖(4.8.3.f) 照射強度283 mW/cm2,照射時間為40分鐘的圖形。……………83 圖(4.8.3.w) 照射強度283 mW/cm2,照射時間為40分鐘的未受光面基板的吸附 情形圖。………………………………………………………………84 圖(4.8.3.g) 照射強度283 mW/cm2,照射時間為60分鐘的圖形。……………85 圖(4.8.3.x) 照射強度283 mW/cm2,照射時間為60分鐘的未受光面基板的吸附 情形圖。………………………………………………………………86 圖(4.8.3.h) 照射強度283 mW/cm2,照射時間為90分鐘的圖形。……………87 圖(4.8.3.y) 照射強度283 mW/cm2,照射時間為90分鐘的未受光面基板的吸附 情形圖。……………………………………………………………88 圖(4.8.3.i) 照射強度283 mW/cm2,照射時間為120分鐘的圖形。…………89 圖(4.8.3.z) 照射強度283 mW/cm2,照射時間為120分鐘的未受光面基板的吸附 情形圖。…………………………………………………………………90 圖(4.8.3.1) 把圖(4.8.3.c)~(4.8.3.i)中預傾角對照射綠光時間作圖。…………92 圖(4.8.4.a) 照射強度99 mW/cm2,照射時間為60分鐘的圖形。………………94 圖(4.8.4b) 照射強度113 mW/cm2,照射時間為60分鐘的圖形。……………95 圖(4.8.4.c) 照射強度141 mW/cm2,照射時間為60分鐘的圖形。……………96 圖(4.8.4.d) 照射強度212 mW/cm2,照射時間為60分鐘的圖形。……………97 圖(4.8.4.e) 照射強度283 mW/cm2,照射時間為60分鐘的圖形。……………98 圖(4.8.4.f) 照射強度353 mW/cm2,照射時間為60分鐘的圖形。……………99 圖(4.8.4.g) 照射強度353 mW/cm2,照射時間為60分鐘的未受光面基板的吸附情形圖。……………………………………………………………100 圖(4.8.4.1) 把圖(4.8.4.a)~(4.8.4.e)中預傾角對照射綠光強度作。……………102 圖(5.0) 液晶導軸和水平方向的夾角示意圖。…………………………………104 圖(5.1.1.1) OCB架構其操作模式之分子排列狀態示意圖:(a)未加電壓,液晶為 splay態;(b) 外加V1,液晶為bend I態;(c)外加V2,液晶為bend II態[82-85]。……………………………….…………………………105 圖(5.1.1.2) OCB架構顯示器的構造示意圖。…………………………………106 圖(5.1.2.1) Bos 等人所繪之OCB模式液晶分子排列示意圖[84]。……………107 圖(5.1.2.2) Bos 等人所繪之(a)當電壓取消後液晶分子在水平液晶盒中轉動行為 的示意圖;(b)當電壓取消後液晶分子在OCB液晶盒中轉動行為之示意圖 [84]。……………………………………………………108 圖(5.1.3.1) Brimicombe等人所繪之OCB模式在不同切換電壓下其分子排列示意 圖[86]。………………………………………………………………109 圖(5.1.3.2) 成核現象過程之示意圖[86-89]。……………………………………109 圖(5.1.4) Yeung 等人所量測之 Splay態和Bend Ⅰ態與預傾角的關係[92]。110 圖(5.2) 利用STN的方式來近似pi-cell的液晶導軸模擬圖。…………………111 圖(5.3.1) DMOAP預傾角產生的示意圖。………………………………………112 圖(5.3.2) 製作水平配向和pi-cell的方法示意圖。圖(A)為pi-cell的製作方式;圖(B)是50o pre-tilt angle的製作方式。………………………………113 圖(5.3.3) pi-cell樣品實驗量測出來的T-V 曲線圖形。…………………………114 圖(5.3.4) 1D-Dimos模擬出來的pi-cell之T-V曲線圖形(上下基板的預傾角是 50o)。…………………………………………………………………114 圖(5.3.5) 水平配向樣品實驗量測出來的T-V 曲線圖形。……………………115 圖(5.3.6) 1D-Dimos模擬出來的T-V曲線圖形(上下基板的預傾角是50o)。…115 圖(5.4) 反應速度量測裝置圖。…………………………………………………116 圖(5.5.1) pi-cell的上升時間測量圖。……………………………………………117 圖(5.5.2) pi-cell的下降時間測量圖。……………………………………………118 圖(5.6.1) 水平配向樣品的上升時間。…………………………………………121 圖(5.6.2) 水平配向樣品的下降時間。…………………………………………121 圖(6.1) 半反射半穿透液晶顯示器的結構示意圖[14,32]。……………………124 圖(6.2) 製作可電控變焦透鏡的示意圖[1,2,32]。………………………………125 表目錄 表(2.2) Fuh等人所製作之雷射引致之波紋結構之波紋深度與照射時間關係 [62]。…………………………………………………………………39 表(3.1.1) 向列相液晶E7的各種參數[13]。………………………………………44

    [1] O. Pishnyak, S. Sato, and O. D. Lavrentovich, “Electrically tunable lens based on a dual-frequency nematic liquid crystal,” Appl. Opt. 45, 4576-4582 (2006).
    [2] H.-W. Ren, Y.-H. Fan, S. Gauza, and S.-T. Wu, “Tunable-focus flat liquid crystal spherical lens,” Appl. Phys. Lett. 84, 4789-4791 (2004).
    [3] D.-K. Yang, L. -C. Chien, and J. W. Doane, “Cholesteric liquid crystal/polymer dispersion for haze-free light shutters,” Appl. Phys. Lett. 60, 3102-3104 (1992).
    [4] C.-Y. Huang, K.-Y. Fu, K.-Y. Lo, and M.-S. Tsai, “Bistable transflective cholesteric light shutters,” Opt. Express 11, 560-565 (2003).
    [5] M. Honma and T. Nose, “Polarization-Independent Liquid Crystal Grating Fabricated by Microrubbing Process,” Jpn. J. Appl. Phys. 42, 6992–6997 (2003).
    [6] J. Chen, P. J. Bos, H. Vithana, and D. L. Johnson, “An electro‐optically controlled liquid crystal diffraction grating,” Appl. Phys. Lett. 67, 2588-2590 (1995).
    [7] K.-T. Cheng, C.-K. Liu, C.-L. Ting, and A. Y.-G. Fuh, “Electrically switchable and optically rewritable reflective Fresnel zone plate in dye-doped cholesteric liquid crystals,” Opt. Express 15, 14078-14085 (2007).
    [8] T.-H. Lin, Y.-H. Huang, A. Y.-G. Fuh, and S.-T. Wu, “Polarization controllable Fresnel lens using dye-doped liquid crystals,” Opt. Express 14, 2359-2364 (2006).
    [9] I. C. Khoo, S. Slussarenko, B. D. Guenther, Min-Yi Shih, P. Chen, and W. V. Wood, “Optically induced space-charge fields, dc voltage, and extraordinarily large nonlinearity in dye-doped nematic liquid crystals,” Opt. Lett. 23, 253-255 (1998).
    [10] A. G.-S. Chen and David J. Brady, “Surface-stabilized holography in an azo-dye-doped liquid crystal,” Opt. Lett. 17, 1231-1233 (1992).
    [11] M. Hara, S. Ichikawa, H. Takezoe, and A. Fukuda, “Binary Mass Diffusion Constants in Nematic Liquid Crystals Studied by Forced Rayleigh Scattering,” Jpn. J. Appl. Phys. 23, 1420-1425 (1984).
    [12] L.-C. Lin, H.-C. Jau, T.-H. Lin, and A. Y.-G. Fuh, “Highly efficient and polarization-independent Fresnel lens based on dye-doped liquid crystal,” Opt. Express 15, 2900-2906 (2007).
    [13] 鄭恪亭碩士論文,偶氮染料摻雜液晶薄膜之雙光子效應研究(Studies of Biphotonic Effect based on Dye-Doped Nematic Liquid Crystal films).民國91年.
    [14] D.-K. Yang and S.-T. Wu. Fundamental of Liquid Crystal devices. (Wiley, Chichester, 2006).
    [15] C.-R. Lee, T.-L. Fuh, K.-T. Cheng, T.-S. Mo, and Andy Y.-G. Fuh, “Surface-assisted photoalignment in dye-doped liquid-crystal films,” Phys. Rev. E 69, 031704(2004).
    [16] J. Hoogboom, T. Rasing, A. E. Rowan, and R. J. M. Nolte, “LCD alignment layers. Controlling nematic domain properties,” J. Mater. Chem. 16, 1305–1314 (2006).
    [17] F.-S. Yeung, J.-Y. Ho, Y.-W. Li, F.-C. Xie, O.-K. Tsui, P. Sheng, and H.-S. Kwok, “Variable liquid crystal pretilt angles by nanostructured surfaces,” Appl. Phys. Lett. 88, 051910-1-3 (2006).
    [18] J. Y.-L. Ho, V. G. Chigrinov, and H.-S. Kwok, “Variable liquid crystal pretilt angles generated by photoalignment of a mixed polyimide alignment layer,” Appl. Phys. Lett. 90, 243506-1-3 (2007).
    [19] J.-H. Lee and D.-S. Seo, “Novel alignment method for control of high pretilt angle by using a solvent dipping effect on polymer surfaces,” Liq. Cryst. 27, 711-713 (2000).
    [20] F. S.-Y. Yeung, F.-C. Xie, J. T.-K. Wan, F.-K. Lee, O. K. C. Tsui, P. Sheng, and H.-S. Kwok, “Liquid crystal pretilt angle control using nanotextured surfaces,” J. Appl. Phys. 99, 124506-1-4 (2006).
    [21] M. Nishikawa and J. L. West, “Mechanism of Generation of Pretilt Angles on Polyimides with a Single Exposure to Polarized Ultraviolet Light,” Jpn. J. Appl. Phys. 38, 5183-5188 (1999).
    [22] K.-W. Lee, A. Lien, J. H. Stathis, and S.-H. Paek, “Control and Modification of Nematic Liquid Crystal Pretilt Angles on Polyimides,” Jpn. J. Appl. Phys. 36, 3591-3597 (1997).
    [23] J.-B. Kim, K.-C. Kim, H.-J. Ahn, B.-H. Hwang, D.-C. Hyun, and H.-K. Baik, “Variable liquid crystal pretilt angles on various compositions of alignment layers,” Appl. Phys. Lett. 90, 043515-1-3 (2007).
    [24] K. E. Vaughn, M. Sousa, D. Kang, and C. Rosenblatt, “Continuous control of liquid crystal pretilt angle from homeotropic to planar,” Appl. Phys. Lett. 90, 194102-1-3 (2007).
    [25] O. Lehmann. “Uber fliessende krystalle,” Zeitschrift. Fur. Physikalische. Chemie. 4, 462-472 (1889).
    [26] F. Reinitzer, “Contributions to the knowledge of cholesterol,” Liq. Cryst. 5, 7-18 (1989).
    [27] F. Reinizer. “Beiträge zur Kenntniss des Cholesterins,” Monatsh. Chem. 9, 421-441 (1888).
    [28] E. G. Virga. Variational Theories for Liquid Crystals. pp 2 (Chapman & Hall, London, 1994).
    [29] Z.-C. Ou-Yang, J.-X. Liu, Y.-Z. Xie, and Y.-Z. Xie. Geometric Methods in the Elastic Theory of Membranes in Liquid Crystal Phases. pp 1-2 (World Scientific, New Jersey, 1999).
    [30] S. Chandrasekhar. Liquid Crystals (Cambridge University Press, Cambridge, 1992).
    [31] G. Friedel, “Les états mésomorphes de la matière,” Ann, Physique 18, 273-474 (1922).
    [32] S.-T. Wu and D.-K. Yang. Reflective liquid crystal display (Wiley, Chichester 2001).
    [33] I. C. Khoo. Liquid Crystals (Wiely, New Jersey, 2007).
    [34] H. Sackmann and D. Demus, “The Problems of Polymorphism in Liquid Crystals,” Mol. Cryst. Liq. Cryst. 21, 239-273 (1973).
    [35] A. Saupe, “On Molecular Structure and Physical Properties of Thermotropic Liquid Crystals,” Mol. Cryst, Liq. Cryst. 7, 59-74 (1969).
    [36] W. Helfrich and C.-S. Oh, “Optically Active Smectic Liquid Crystal,” Mol. Cryst, Liq. Cryst. 14, 289-292 (1971).
    [37] R. B. Meyer, L. Liebert, L. S. et P. Keller, “Ferroelectric liquid crystals,” J. Physique Lett. 36, 69-71 (1975).
    [38] S. Chandrasekhar, B. K. Sadashiva, and K. A. Suresh, “Liquid crystals of disk-like molecules,” Pramana 9, 471-480 (1997).
    [39] J. D. Foote and H. F. Blanck, “A demonstration of hexagonal close-packed and cubic close-packed crystal structures,” J. Chem. Educ. 68, 777-778 (1991).
    [40] X.-Y. Nie, H.-Q. Xianyu, R.-B. Lu, T. X. Wu, and S.-T. Wu, “Pretilt angle effects on liquid crystal Response time,” J. Disp. Technol. 3, 280-283 (2007).
    [41] F. Guérin, J. M. Chappe, P. Joffre, and D. Dolfi, “Modeling, synthesis and characterization of a millimeter-wave multilayer microstrip liquid crystal phase shifter,” Jpn. J. Appl. Phys. 36, 4409-4413 (1997).
    [42] J. Li, S.-T. Wu, S. Brugioni, R. Meucci, and S. Faetti, “Infrared refractive indices of liquid crystals,” J. Appl. Phys. 97, 073501-1-5 (2005).
    [43] I. Jánossy, A. D. Lloyd, and B. S. Wherrett, “Anomalous Optical Freedericksz Transition in an Absorbing Liquid Crystal,” Mol. Cryst. Liq. Cryst. 179, 1-12 (1990).
    [44] I. Jánossy and A. D. Lloyd, “Low-Power Optical Reorientation in Dyed Nematics,” Mol. Cryst. Liq. Cryst. 203, 77-84 (1991).
    [45] I. Jánossy and T. Kosa, “Influence of anthraquinone dyes on optical reorientation of nematic liquid crystals,” Opt. Lett. 17, 1183(1992).
    [46] I. Jánossy, L. Csillag, and A. D. Lloyd, “Temperature dependence of the optical Fréedericksz transition in dyed nematic liquid crystals,” Phys. Rev. A, 44, 8410-8413 (1991).
    [47] W. M. Gibbons, P. J. Shannon, S. T. Sun, and B. J. Swetlin, “Surface-mediated alignment of nematic liquid crystals with polarized laser light,” Nature 351, 49-50 (1991).
    [48] J.-C. Chao, W.-Y. Wu, and A. Y.-G. Fuh, “Diffraction characteristics of a liquid crystal polarization grating analyzed using the finite-difference time-domain method,” Opt. Express 15, 16702-16711 (2007).
    [49]https://www.sigmaaldrich.com/catalog/substance/methylred2693049352711?lang=en®ion=TW.
    [50] Z. Sekkat and W. Knoll, “Creation of second-order nonlinear optical effects by photoisomerization of polar azo dyes in polymeric films: theoretical study of steady-state and transient properties,” J. Opt. Soc. Am. 12, 1855-1867 (1995).
    [51] H. Rau, G. Greiner, G. Gauglitz, and H. Meier, “Photochemical quantum yields in the A (+h.nd.) dblarw. B (+h.nu.,.DELTA) system when only the spectrum of A is known,” J. Phys. Chem. 94, 6523-6524 (1990).
    [52] E. Fisher, “The calculation of photostationary states in systems A, B when only A is known,” J. Phys. Chem. 71, 3704-3706 (1967).
    [53] C. R. Crecca and A. E. Roitberg, “Theoretical Study of the Isomerization Mechanism of Azobenzene and Disubstituted Azobenzene Derivatives,” J. Phys. Chem. A 110, 8188-8203 (2006).
    [54] F. Simoni, O. Francescangeli, Y. Reznikov, and S. Slussarenko, “Dye-doped liquid crystals as high-resolution recording media,” Opt. Lett. 22, 549-551 (1997).
    [55] D. Voloshchenko, A. Khyzhnyak, Y. Reznikov, and V. Reshetnyak, “Control of an Easy-Axis on Nematic-Polymer Interface by Light Action to Nematic Bulk,” Jpn. J. Appl. Phys. 34, 566-571 (1995).
    [56] E. Ouskova, Yu. Reznikov, S. V. Shiyanovskii, L. Su, J. L. West, O. V. Kuksenok, O. Francescangeli, and F. Simoni, “Photo-orientation of liquid crystals due to light-induced desorption and adsorption of dye molecules on an aligning surface,” Phys. Rev. E 64, 051709-1-5 (2001).
    [57] E. Ouskova, D. Fedorenko, Yu. Reznikov, S. V. Shiyanovskii, L. Su, J. L. West, O. V. Kuksenok, O. Francescangeli, and F. Simoni, “Hidden photoalignment of liquid crystals in the isotropic phase,” Phys. Rev. E 63, 021701 (2001).
    [58] S.-Y. Huang, S.-T. Wu, and A. Y.-G. Fuh, “Optically switchable twist nematic grating based on a dye-doped liquid crystal film,” Appl. Phys. Lett. 88, 041104-1-3 (2006).
    [59] . S. Kurihara, T. Ikeda, T. Sasaki, H.-B. Kim, and S. Tazuke, “Time-resolved observation of isothermal phase transition of liquid crystals triggered by photochemical reaction of dopant,” J. Chem. Soc., Chem. Commun. 1990, 1751-1752 (1990).
    [60] S. J. Watson, H. F. Gleeson, A. D'Emanuele, S. V. Serak, and V. A. Grozhik, “In-situ isothermal phase transitions in photochromic liquid crystals”, Proc. SPIE 3282, Photosensitive Optical Materials and Devices II, (9 June 1998).
    [61] A. G. Chen and D. J. Brady, “Real-time holography in azo-dye-doped liquid crystals,” Opt. Lett. 17, 441-443 (1992).
    [62] A. Y.-G. Fuh, C.-C. Liao, K.-C. Hsu, and C.-L. Lu, “Laser-induced reorientation effect and ripple structure in dye-doped liquid-crystal films,” Opt. Lett. 28, 1179-1181 (2003).
    [63] A. E. Siegman and P. M. Fauchet, “Stimulated Wood’s Anomalies on Laser-Illuminated Surfaces,” IEEE J. Quantum Electron. QE-22, 1384-1403 (1986).
    [64] D. W. Berreman, “Alignment of Liquid Crystals by Grooved Surfaces,” Mol. Cryst. Liq. Cryst. 23, 215-231 (1973).
    [65] D. W. Berreman, “Solid Surface Shape and the Alignment of an Adjacent Nematic Liquid Crystal,” Phys. Rev. Lett. 28, 1683-1686 (1972).
    [66] J. Fukuda, M. Yoneya, and H. Yokoyama, “Surface-Groove-Induced Azimuthal Anchoring of a Nematic Liquid Crystal: Berreman’s Model Reexamined,” Phy. Rev. Lett. 98, 187803 (2007).
    [67] J. F. Young, J. S. Preston, H. M. van Driel, and J. E. Sipe, “Laser-induced periodic surface structure. II. Experiments on Ge, Si, Al, and brass,” Phys. Rev. B 27, 1155-1172 (1983).
    [68] Q.-H. Lu, Z.-G. Wang, J. Yin, Z.-K. Zhu, and H. Hiraoka, “Molecular orientation in laser-induced periodic microstructure on polyimide surface,” Appl. Phys. Lett. 76, 1237-1239 (2000).
    [69] N. R. Isenor, “CO2 laser-produced ripple patterns on NixP1−x surfaces,” Appl. Phys. Lett. 31, 148-150 (1977).
    [70] S. R. J. Brueck and D. J. Ehrlich, “Stimulated Surface-Plasma-Wave Scattering and Growth of a Periodic Structure in Laser-Photodeposited Metal Films,” Phys. Rev. Lett. 48, 1678-1681 (1982).
    [71] J. J. Burke, G. I. Stegeman, and T. Tamir, “Surface-polariton-like waves guided by thin, lossy metal films,” Phys. Rev. B 33, 5186-5201 (1986).
    [72] G. G. Nair, S. K. Prasad, and C. V. Yelamaggad, “Opto-dielectric effect on a nematic liquid crystal doped with a photoactive azo mesogen,” J. Appl. Phys. 87, 2084 (2000).
    [73] G.-J. Lee, D.-S. Kim, and M.-S. Lee, “Photophysical properties and photoisomerization processes of Methyl Red embedded in rigid polymer,” Appl. Opt. 34, 138-143 (1995).
    [74] I. Jánossy and L. Szabados, “Photoisomerization of Azo-Dyes in Nematic Liquid Crystals,” J. Nonlinear Opt. Phys. & Materials 7, 539–551 (1998).
    [75] F. J. Kahn, “Orientation of liquid crystals by surface coupling agents,” Appl. Phys. Lett. 22, 386-388 (1973).
    [76] S. P. Collins, R. K. Pope, R. W. Scheetz, R. I. Ray, P. A. Wagner, and B. J. Little, “Advantages of environmental scanning electron microscopy in studies of microorganisms,” Microsc. Res. Tech. 25, 398-405 (1993).
    [77] G. K. Bennig. Atomic force microscope and method for imaging surfaces with atomic resolution. US Pat. 4724318A.
    [78] N. M. Amer and G. Meyer. Atomic force microscopy. US Pat. RE37,299 (Reissued Pat. No. 5,144,833A).
    [79] 2005 Catalogue of SOLVER SCANNING PROBE MICROSCOPE. (NTMDT co, Russia) 2005.
    [80] 許維婷碩士論文,“液晶盒厚度量測方法的研究(Methods of Cell Gap Measurement for Liquid Crystal Cells),” 國立成功大學光電科學與工程研究所 (民國92年).
    [81] G. R. Fowles. Introduction to modern optics. (University of Utah, New York, 1975).
    [82] K.-H. Yang, C.-H. Liao, H.-M. Chang, and Y.-T. Chen, “Structure of an optical compensated bend nematic liquid crystal display panel,” US Pat. US 2006/0187395 A1.
    [83] T. Miyashita, Y. Yamaguchi, and T. Uchida, “Wide-Viewing-Angle Display Mode Using Bend Alignment Liquid Crystal Cell,” Jpn. J. Appl. Phys. 34, L177-L179 (1995).
    [84] P. J. Bos and K. R. Koehler/Beran, “The pi-Cell: A Fast Liquid-Crystal Optical-Switching Device,” Mol. Cryst. Liq. Cryst. 113, 329-339 (1984).
    [85] P. Bos and J. Rahman, “An optically ‘self-compensating’ electro-optical effect with wide angle of view,” SID Digest of Technical Papers, 24, 277-280 (1993).
    [86] P. D. Brimicombe and E. P. Raynes, “Symmetric H state lifetime in splayed nematic liquid crystal devices,” Appl. Phys. Lett. 89, 031121-1-3 (2006).
    [87] E. Acosta, B. Henley, D. Kean, M. Tillin, C. Tombling, M. Towler, E. Walton, H. Walton, and R. Winlow, “Nucleation of the pi-cell operating state: a comparison of techniques,” Liq. Cryst. 31, 1619-1625 (2004).
    [88] S.-H. Lee, T.-J. Kim, G.-D. Lee, T.-H. Yoon, and J.-C. Kim, “Geometric Structure for the Uniform Splay-to-Bend Transition in a π-Cell,” Jpn. J. Appl. Phys. 42, L 1148–L 1151 (2003).
    [89] H. Kikuchi, H. Yamamoto, H. Sato, M. Kawakita, K. Takizawa, and H. Fujikake, “Bend-Mode Liquid Crystal Cells Stabilized by Aligned Polymer Walls,” Jpn. J. Appl. Phys. 44, 981-989 (2005).
    [90] S.-H. Lee, S.-H. Hong, J.-D. Noh, H.-Y. Kim, and D.-S. Seo, “Chiral-Doped Optically Compensated Bend Nematic Liquid Crystal Cell with Continuous Deformation from Twist to Twisted Bend State,” Jpn. J. Appl. Phys. 40, L389-L392 (2001).
    [91] Y. Asakawa, K. Yokota, M. Nanaumi, N. Takatuka, T. Takahashi, and S. Saito, “Stabilization of Bend Alignment Using Optical Polymerization of UV Curable Liquid Crystalline Monomers,” Jpn. J. Appl. Phys. 45, 5878-5884 (2006).
    [92] F. S.-Y. Yeung and H.-S. Kwok, “Fast-response no-bias-bend liquid crystal displays using nanostructured surfaces,” Appl. Phys. Lett. 88, 063505-1-3 (2006).
    [93] X.-Y. Nie, R.-B. Lu, H.-Q. Xianyu, T. X. Wu, and S.-T. Wu, “Anchoring energy and cell gap effects on liquid crystal response time,” J. Appl. Phys. 101, 103110-1-5 (2007).
    [94] C.-Y. Huang, C.-Y. Hu, H.-C. Pan, and K.-Y. Lo, “Electrooptical responses of carbon nanotube doped liquid crystal devices” Jpn. J. Appl. Phys. 44, 8077-8081 (2005).

    下載圖示 校內:2018-09-12公開
    校外:2018-09-12公開
    QR CODE