| 研究生: |
劉鄭楷 Liu, Cheng-Kai |
|---|---|
| 論文名稱: |
染料摻雜液晶薄膜中利用光配向技術改變液晶預傾角之研究與應用 Study of variable liquid crystal pre-tilt angles generated by photoalignment technique in dye-doped liquid crystal films and its applications |
| 指導教授: |
傅永貴
Fuh, Y.G. Andy |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 物理學系 Department of Physics |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 137 |
| 中文關鍵詞: | 液晶 、光配向 、預傾角 |
| 外文關鍵詞: | liquid crystal, photoalignment, pre-tilt angle |
| 相關次數: | 點閱:120 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文研發可以在摻雜染料的液晶薄膜(DDLC)中,利用光配向的機制,來達成液晶預傾角控制的效果。
照射一線性偏振光至一垂直配向的參雜偶氮染料液晶樣品後,偶氮染料甲基紅(Methyl Red, MR)受激發後會吸附在基板上;吸附量會隨著入射光的強度增強或是入射光照射時間變長而增加。當入射光的強度或是入射光照射時間到達某一個強度或是時間的時候,就會產生波紋結構(ripple structure),根據Berreman理論,波紋結構是提供水平配向力的來源,且波紋結構的深度也和照射強度或是照射時間成正比。固定強度的基板垂直配向力和會隨著照射強度和照射時間變化的水平配向力相互抗衡,由最終的合力來決定液晶的預傾角。最後垂直配向的液晶就會變成一個混合結構(hybrid structure),中間的液晶層則呈連續變化,從一端的垂直配向到另一端有一預傾角的水平配向。
我們利用量測混合結構的穿透度和電壓曲線圖,再利用1D-Dimos套裝軟體所模擬出來的圖形做比對,來推測液晶的預傾角。
利用這個技術,我們製作了一個pi-cell,量測並分析其反應速度。
除此之外,這一個技術還有很多有潛力的應用,如製作全像光柵或者是可變焦液晶透鏡。
This work demonstrates an approach to control the pre-tilt angle of liquid crystal using photoalignment technique in azo dye-doped liquid crystal (DDLC) films.
By illuminating a homeotropic alignment DDLC sample with a linearly polarized laser beam, the excited dyes (Methyl Red, MR) are adsorbed onto the substrate. The quantity of the adsorbed dyes increases with the pumping beam intensity or illumination duration. The adsorbed dye may form a ripple texture when the illumination duration or intensity is long or strong enough. The amplitude of the ripple structure is proportional to the illumination duration or intensity. Based on the Berreman theory, the ripple structure provides a homogeneous alignment force, and the anchoring force is proportional to the amplitude of the ripple structure. The competition between the constant vertical alignment forces and variable homogeneous force due to the ripple structure determines the final pre-tilt angles of liquid crystals. Finally, a homeotropic alignment DDLC sample becomes a hybrid one, in which the alignment of liquid crystals is homeotropic on one substrate and homogeneous on the other substrate.
We then measure the transmission versus voltage (T-V) curve of the formed hybrid LC cell. By comparing the measured T-V curve with that simulated using 1D-Dimos software, we can determine the pre-tilt angle of liquid crystals.
Using this technique, we fabricate a pi-cell. The response times of the cell are measured and analyzed.
Additionally, several potential applications, such as holographic grating, tunable
liquid crystal lens, can be developed using the present approach.
[1] O. Pishnyak, S. Sato, and O. D. Lavrentovich, “Electrically tunable lens based on a dual-frequency nematic liquid crystal,” Appl. Opt. 45, 4576-4582 (2006).
[2] H.-W. Ren, Y.-H. Fan, S. Gauza, and S.-T. Wu, “Tunable-focus flat liquid crystal spherical lens,” Appl. Phys. Lett. 84, 4789-4791 (2004).
[3] D.-K. Yang, L. -C. Chien, and J. W. Doane, “Cholesteric liquid crystal/polymer dispersion for haze-free light shutters,” Appl. Phys. Lett. 60, 3102-3104 (1992).
[4] C.-Y. Huang, K.-Y. Fu, K.-Y. Lo, and M.-S. Tsai, “Bistable transflective cholesteric light shutters,” Opt. Express 11, 560-565 (2003).
[5] M. Honma and T. Nose, “Polarization-Independent Liquid Crystal Grating Fabricated by Microrubbing Process,” Jpn. J. Appl. Phys. 42, 6992–6997 (2003).
[6] J. Chen, P. J. Bos, H. Vithana, and D. L. Johnson, “An electro‐optically controlled liquid crystal diffraction grating,” Appl. Phys. Lett. 67, 2588-2590 (1995).
[7] K.-T. Cheng, C.-K. Liu, C.-L. Ting, and A. Y.-G. Fuh, “Electrically switchable and optically rewritable reflective Fresnel zone plate in dye-doped cholesteric liquid crystals,” Opt. Express 15, 14078-14085 (2007).
[8] T.-H. Lin, Y.-H. Huang, A. Y.-G. Fuh, and S.-T. Wu, “Polarization controllable Fresnel lens using dye-doped liquid crystals,” Opt. Express 14, 2359-2364 (2006).
[9] I. C. Khoo, S. Slussarenko, B. D. Guenther, Min-Yi Shih, P. Chen, and W. V. Wood, “Optically induced space-charge fields, dc voltage, and extraordinarily large nonlinearity in dye-doped nematic liquid crystals,” Opt. Lett. 23, 253-255 (1998).
[10] A. G.-S. Chen and David J. Brady, “Surface-stabilized holography in an azo-dye-doped liquid crystal,” Opt. Lett. 17, 1231-1233 (1992).
[11] M. Hara, S. Ichikawa, H. Takezoe, and A. Fukuda, “Binary Mass Diffusion Constants in Nematic Liquid Crystals Studied by Forced Rayleigh Scattering,” Jpn. J. Appl. Phys. 23, 1420-1425 (1984).
[12] L.-C. Lin, H.-C. Jau, T.-H. Lin, and A. Y.-G. Fuh, “Highly efficient and polarization-independent Fresnel lens based on dye-doped liquid crystal,” Opt. Express 15, 2900-2906 (2007).
[13] 鄭恪亭碩士論文,偶氮染料摻雜液晶薄膜之雙光子效應研究(Studies of Biphotonic Effect based on Dye-Doped Nematic Liquid Crystal films).民國91年.
[14] D.-K. Yang and S.-T. Wu. Fundamental of Liquid Crystal devices. (Wiley, Chichester, 2006).
[15] C.-R. Lee, T.-L. Fuh, K.-T. Cheng, T.-S. Mo, and Andy Y.-G. Fuh, “Surface-assisted photoalignment in dye-doped liquid-crystal films,” Phys. Rev. E 69, 031704(2004).
[16] J. Hoogboom, T. Rasing, A. E. Rowan, and R. J. M. Nolte, “LCD alignment layers. Controlling nematic domain properties,” J. Mater. Chem. 16, 1305–1314 (2006).
[17] F.-S. Yeung, J.-Y. Ho, Y.-W. Li, F.-C. Xie, O.-K. Tsui, P. Sheng, and H.-S. Kwok, “Variable liquid crystal pretilt angles by nanostructured surfaces,” Appl. Phys. Lett. 88, 051910-1-3 (2006).
[18] J. Y.-L. Ho, V. G. Chigrinov, and H.-S. Kwok, “Variable liquid crystal pretilt angles generated by photoalignment of a mixed polyimide alignment layer,” Appl. Phys. Lett. 90, 243506-1-3 (2007).
[19] J.-H. Lee and D.-S. Seo, “Novel alignment method for control of high pretilt angle by using a solvent dipping effect on polymer surfaces,” Liq. Cryst. 27, 711-713 (2000).
[20] F. S.-Y. Yeung, F.-C. Xie, J. T.-K. Wan, F.-K. Lee, O. K. C. Tsui, P. Sheng, and H.-S. Kwok, “Liquid crystal pretilt angle control using nanotextured surfaces,” J. Appl. Phys. 99, 124506-1-4 (2006).
[21] M. Nishikawa and J. L. West, “Mechanism of Generation of Pretilt Angles on Polyimides with a Single Exposure to Polarized Ultraviolet Light,” Jpn. J. Appl. Phys. 38, 5183-5188 (1999).
[22] K.-W. Lee, A. Lien, J. H. Stathis, and S.-H. Paek, “Control and Modification of Nematic Liquid Crystal Pretilt Angles on Polyimides,” Jpn. J. Appl. Phys. 36, 3591-3597 (1997).
[23] J.-B. Kim, K.-C. Kim, H.-J. Ahn, B.-H. Hwang, D.-C. Hyun, and H.-K. Baik, “Variable liquid crystal pretilt angles on various compositions of alignment layers,” Appl. Phys. Lett. 90, 043515-1-3 (2007).
[24] K. E. Vaughn, M. Sousa, D. Kang, and C. Rosenblatt, “Continuous control of liquid crystal pretilt angle from homeotropic to planar,” Appl. Phys. Lett. 90, 194102-1-3 (2007).
[25] O. Lehmann. “Uber fliessende krystalle,” Zeitschrift. Fur. Physikalische. Chemie. 4, 462-472 (1889).
[26] F. Reinitzer, “Contributions to the knowledge of cholesterol,” Liq. Cryst. 5, 7-18 (1989).
[27] F. Reinizer. “Beiträge zur Kenntniss des Cholesterins,” Monatsh. Chem. 9, 421-441 (1888).
[28] E. G. Virga. Variational Theories for Liquid Crystals. pp 2 (Chapman & Hall, London, 1994).
[29] Z.-C. Ou-Yang, J.-X. Liu, Y.-Z. Xie, and Y.-Z. Xie. Geometric Methods in the Elastic Theory of Membranes in Liquid Crystal Phases. pp 1-2 (World Scientific, New Jersey, 1999).
[30] S. Chandrasekhar. Liquid Crystals (Cambridge University Press, Cambridge, 1992).
[31] G. Friedel, “Les états mésomorphes de la matière,” Ann, Physique 18, 273-474 (1922).
[32] S.-T. Wu and D.-K. Yang. Reflective liquid crystal display (Wiley, Chichester 2001).
[33] I. C. Khoo. Liquid Crystals (Wiely, New Jersey, 2007).
[34] H. Sackmann and D. Demus, “The Problems of Polymorphism in Liquid Crystals,” Mol. Cryst. Liq. Cryst. 21, 239-273 (1973).
[35] A. Saupe, “On Molecular Structure and Physical Properties of Thermotropic Liquid Crystals,” Mol. Cryst, Liq. Cryst. 7, 59-74 (1969).
[36] W. Helfrich and C.-S. Oh, “Optically Active Smectic Liquid Crystal,” Mol. Cryst, Liq. Cryst. 14, 289-292 (1971).
[37] R. B. Meyer, L. Liebert, L. S. et P. Keller, “Ferroelectric liquid crystals,” J. Physique Lett. 36, 69-71 (1975).
[38] S. Chandrasekhar, B. K. Sadashiva, and K. A. Suresh, “Liquid crystals of disk-like molecules,” Pramana 9, 471-480 (1997).
[39] J. D. Foote and H. F. Blanck, “A demonstration of hexagonal close-packed and cubic close-packed crystal structures,” J. Chem. Educ. 68, 777-778 (1991).
[40] X.-Y. Nie, H.-Q. Xianyu, R.-B. Lu, T. X. Wu, and S.-T. Wu, “Pretilt angle effects on liquid crystal Response time,” J. Disp. Technol. 3, 280-283 (2007).
[41] F. Guérin, J. M. Chappe, P. Joffre, and D. Dolfi, “Modeling, synthesis and characterization of a millimeter-wave multilayer microstrip liquid crystal phase shifter,” Jpn. J. Appl. Phys. 36, 4409-4413 (1997).
[42] J. Li, S.-T. Wu, S. Brugioni, R. Meucci, and S. Faetti, “Infrared refractive indices of liquid crystals,” J. Appl. Phys. 97, 073501-1-5 (2005).
[43] I. Jánossy, A. D. Lloyd, and B. S. Wherrett, “Anomalous Optical Freedericksz Transition in an Absorbing Liquid Crystal,” Mol. Cryst. Liq. Cryst. 179, 1-12 (1990).
[44] I. Jánossy and A. D. Lloyd, “Low-Power Optical Reorientation in Dyed Nematics,” Mol. Cryst. Liq. Cryst. 203, 77-84 (1991).
[45] I. Jánossy and T. Kosa, “Influence of anthraquinone dyes on optical reorientation of nematic liquid crystals,” Opt. Lett. 17, 1183(1992).
[46] I. Jánossy, L. Csillag, and A. D. Lloyd, “Temperature dependence of the optical Fréedericksz transition in dyed nematic liquid crystals,” Phys. Rev. A, 44, 8410-8413 (1991).
[47] W. M. Gibbons, P. J. Shannon, S. T. Sun, and B. J. Swetlin, “Surface-mediated alignment of nematic liquid crystals with polarized laser light,” Nature 351, 49-50 (1991).
[48] J.-C. Chao, W.-Y. Wu, and A. Y.-G. Fuh, “Diffraction characteristics of a liquid crystal polarization grating analyzed using the finite-difference time-domain method,” Opt. Express 15, 16702-16711 (2007).
[49]https://www.sigmaaldrich.com/catalog/substance/methylred2693049352711?lang=en®ion=TW.
[50] Z. Sekkat and W. Knoll, “Creation of second-order nonlinear optical effects by photoisomerization of polar azo dyes in polymeric films: theoretical study of steady-state and transient properties,” J. Opt. Soc. Am. 12, 1855-1867 (1995).
[51] H. Rau, G. Greiner, G. Gauglitz, and H. Meier, “Photochemical quantum yields in the A (+h.nd.) dblarw. B (+h.nu.,.DELTA) system when only the spectrum of A is known,” J. Phys. Chem. 94, 6523-6524 (1990).
[52] E. Fisher, “The calculation of photostationary states in systems A, B when only A is known,” J. Phys. Chem. 71, 3704-3706 (1967).
[53] C. R. Crecca and A. E. Roitberg, “Theoretical Study of the Isomerization Mechanism of Azobenzene and Disubstituted Azobenzene Derivatives,” J. Phys. Chem. A 110, 8188-8203 (2006).
[54] F. Simoni, O. Francescangeli, Y. Reznikov, and S. Slussarenko, “Dye-doped liquid crystals as high-resolution recording media,” Opt. Lett. 22, 549-551 (1997).
[55] D. Voloshchenko, A. Khyzhnyak, Y. Reznikov, and V. Reshetnyak, “Control of an Easy-Axis on Nematic-Polymer Interface by Light Action to Nematic Bulk,” Jpn. J. Appl. Phys. 34, 566-571 (1995).
[56] E. Ouskova, Yu. Reznikov, S. V. Shiyanovskii, L. Su, J. L. West, O. V. Kuksenok, O. Francescangeli, and F. Simoni, “Photo-orientation of liquid crystals due to light-induced desorption and adsorption of dye molecules on an aligning surface,” Phys. Rev. E 64, 051709-1-5 (2001).
[57] E. Ouskova, D. Fedorenko, Yu. Reznikov, S. V. Shiyanovskii, L. Su, J. L. West, O. V. Kuksenok, O. Francescangeli, and F. Simoni, “Hidden photoalignment of liquid crystals in the isotropic phase,” Phys. Rev. E 63, 021701 (2001).
[58] S.-Y. Huang, S.-T. Wu, and A. Y.-G. Fuh, “Optically switchable twist nematic grating based on a dye-doped liquid crystal film,” Appl. Phys. Lett. 88, 041104-1-3 (2006).
[59] . S. Kurihara, T. Ikeda, T. Sasaki, H.-B. Kim, and S. Tazuke, “Time-resolved observation of isothermal phase transition of liquid crystals triggered by photochemical reaction of dopant,” J. Chem. Soc., Chem. Commun. 1990, 1751-1752 (1990).
[60] S. J. Watson, H. F. Gleeson, A. D'Emanuele, S. V. Serak, and V. A. Grozhik, “In-situ isothermal phase transitions in photochromic liquid crystals”, Proc. SPIE 3282, Photosensitive Optical Materials and Devices II, (9 June 1998).
[61] A. G. Chen and D. J. Brady, “Real-time holography in azo-dye-doped liquid crystals,” Opt. Lett. 17, 441-443 (1992).
[62] A. Y.-G. Fuh, C.-C. Liao, K.-C. Hsu, and C.-L. Lu, “Laser-induced reorientation effect and ripple structure in dye-doped liquid-crystal films,” Opt. Lett. 28, 1179-1181 (2003).
[63] A. E. Siegman and P. M. Fauchet, “Stimulated Wood’s Anomalies on Laser-Illuminated Surfaces,” IEEE J. Quantum Electron. QE-22, 1384-1403 (1986).
[64] D. W. Berreman, “Alignment of Liquid Crystals by Grooved Surfaces,” Mol. Cryst. Liq. Cryst. 23, 215-231 (1973).
[65] D. W. Berreman, “Solid Surface Shape and the Alignment of an Adjacent Nematic Liquid Crystal,” Phys. Rev. Lett. 28, 1683-1686 (1972).
[66] J. Fukuda, M. Yoneya, and H. Yokoyama, “Surface-Groove-Induced Azimuthal Anchoring of a Nematic Liquid Crystal: Berreman’s Model Reexamined,” Phy. Rev. Lett. 98, 187803 (2007).
[67] J. F. Young, J. S. Preston, H. M. van Driel, and J. E. Sipe, “Laser-induced periodic surface structure. II. Experiments on Ge, Si, Al, and brass,” Phys. Rev. B 27, 1155-1172 (1983).
[68] Q.-H. Lu, Z.-G. Wang, J. Yin, Z.-K. Zhu, and H. Hiraoka, “Molecular orientation in laser-induced periodic microstructure on polyimide surface,” Appl. Phys. Lett. 76, 1237-1239 (2000).
[69] N. R. Isenor, “CO2 laser-produced ripple patterns on NixP1−x surfaces,” Appl. Phys. Lett. 31, 148-150 (1977).
[70] S. R. J. Brueck and D. J. Ehrlich, “Stimulated Surface-Plasma-Wave Scattering and Growth of a Periodic Structure in Laser-Photodeposited Metal Films,” Phys. Rev. Lett. 48, 1678-1681 (1982).
[71] J. J. Burke, G. I. Stegeman, and T. Tamir, “Surface-polariton-like waves guided by thin, lossy metal films,” Phys. Rev. B 33, 5186-5201 (1986).
[72] G. G. Nair, S. K. Prasad, and C. V. Yelamaggad, “Opto-dielectric effect on a nematic liquid crystal doped with a photoactive azo mesogen,” J. Appl. Phys. 87, 2084 (2000).
[73] G.-J. Lee, D.-S. Kim, and M.-S. Lee, “Photophysical properties and photoisomerization processes of Methyl Red embedded in rigid polymer,” Appl. Opt. 34, 138-143 (1995).
[74] I. Jánossy and L. Szabados, “Photoisomerization of Azo-Dyes in Nematic Liquid Crystals,” J. Nonlinear Opt. Phys. & Materials 7, 539–551 (1998).
[75] F. J. Kahn, “Orientation of liquid crystals by surface coupling agents,” Appl. Phys. Lett. 22, 386-388 (1973).
[76] S. P. Collins, R. K. Pope, R. W. Scheetz, R. I. Ray, P. A. Wagner, and B. J. Little, “Advantages of environmental scanning electron microscopy in studies of microorganisms,” Microsc. Res. Tech. 25, 398-405 (1993).
[77] G. K. Bennig. Atomic force microscope and method for imaging surfaces with atomic resolution. US Pat. 4724318A.
[78] N. M. Amer and G. Meyer. Atomic force microscopy. US Pat. RE37,299 (Reissued Pat. No. 5,144,833A).
[79] 2005 Catalogue of SOLVER SCANNING PROBE MICROSCOPE. (NTMDT co, Russia) 2005.
[80] 許維婷碩士論文,“液晶盒厚度量測方法的研究(Methods of Cell Gap Measurement for Liquid Crystal Cells),” 國立成功大學光電科學與工程研究所 (民國92年).
[81] G. R. Fowles. Introduction to modern optics. (University of Utah, New York, 1975).
[82] K.-H. Yang, C.-H. Liao, H.-M. Chang, and Y.-T. Chen, “Structure of an optical compensated bend nematic liquid crystal display panel,” US Pat. US 2006/0187395 A1.
[83] T. Miyashita, Y. Yamaguchi, and T. Uchida, “Wide-Viewing-Angle Display Mode Using Bend Alignment Liquid Crystal Cell,” Jpn. J. Appl. Phys. 34, L177-L179 (1995).
[84] P. J. Bos and K. R. Koehler/Beran, “The pi-Cell: A Fast Liquid-Crystal Optical-Switching Device,” Mol. Cryst. Liq. Cryst. 113, 329-339 (1984).
[85] P. Bos and J. Rahman, “An optically ‘self-compensating’ electro-optical effect with wide angle of view,” SID Digest of Technical Papers, 24, 277-280 (1993).
[86] P. D. Brimicombe and E. P. Raynes, “Symmetric H state lifetime in splayed nematic liquid crystal devices,” Appl. Phys. Lett. 89, 031121-1-3 (2006).
[87] E. Acosta, B. Henley, D. Kean, M. Tillin, C. Tombling, M. Towler, E. Walton, H. Walton, and R. Winlow, “Nucleation of the pi-cell operating state: a comparison of techniques,” Liq. Cryst. 31, 1619-1625 (2004).
[88] S.-H. Lee, T.-J. Kim, G.-D. Lee, T.-H. Yoon, and J.-C. Kim, “Geometric Structure for the Uniform Splay-to-Bend Transition in a π-Cell,” Jpn. J. Appl. Phys. 42, L 1148–L 1151 (2003).
[89] H. Kikuchi, H. Yamamoto, H. Sato, M. Kawakita, K. Takizawa, and H. Fujikake, “Bend-Mode Liquid Crystal Cells Stabilized by Aligned Polymer Walls,” Jpn. J. Appl. Phys. 44, 981-989 (2005).
[90] S.-H. Lee, S.-H. Hong, J.-D. Noh, H.-Y. Kim, and D.-S. Seo, “Chiral-Doped Optically Compensated Bend Nematic Liquid Crystal Cell with Continuous Deformation from Twist to Twisted Bend State,” Jpn. J. Appl. Phys. 40, L389-L392 (2001).
[91] Y. Asakawa, K. Yokota, M. Nanaumi, N. Takatuka, T. Takahashi, and S. Saito, “Stabilization of Bend Alignment Using Optical Polymerization of UV Curable Liquid Crystalline Monomers,” Jpn. J. Appl. Phys. 45, 5878-5884 (2006).
[92] F. S.-Y. Yeung and H.-S. Kwok, “Fast-response no-bias-bend liquid crystal displays using nanostructured surfaces,” Appl. Phys. Lett. 88, 063505-1-3 (2006).
[93] X.-Y. Nie, R.-B. Lu, H.-Q. Xianyu, T. X. Wu, and S.-T. Wu, “Anchoring energy and cell gap effects on liquid crystal response time,” J. Appl. Phys. 101, 103110-1-5 (2007).
[94] C.-Y. Huang, C.-Y. Hu, H.-C. Pan, and K.-Y. Lo, “Electrooptical responses of carbon nanotube doped liquid crystal devices” Jpn. J. Appl. Phys. 44, 8077-8081 (2005).