簡易檢索 / 詳目顯示

研究生: 陳文忠
Chen, Wen-Jung
論文名稱: 應用耦合河海水文模式探討河堤潰溢機制
Investigation on Bank Destructive Flooding Mechanism Using Coupling Wave and Hydrological Watershed Model
指導教授: 許泰文
Hsu, Tai-Wen
共同指導教授: 李兆芳
Lee, Jaw-Fang
學位類別: 博士
Doctor
系所名稱: 工學院 - 水利及海洋工程學系
Department of Hydraulic & Ocean Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 67
中文關鍵詞: 耦合模式數值模擬WASH123D模式林邊溪
外文關鍵詞: coupling model, numerical simulation, WASH123D model, Linbian Creek
相關次數: 點閱:70下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在河、海交會效應對於河川排水的影響,常見的水文模式在計算時,多假設河海之外水不得溢淹至內水,將河海效應分別計算,無法真實反應出沿海低窪地區颱風暴雨期間,河口受海域暴潮頂托致河水暴漲無法排出的水動力現象。因此,應用耦合內外水水文模式計算暴潮位,模擬河川水動力現象確有其需求。
    近年來氣候異常,極端降雨頻繁,常造成大範圍之沿海低窪地區飽受威脅;尤其對河川老舊堤防之安全與河川治理觀念上,已不是僅由堤防結構上著手,或單從河川治理來處理,而必須考慮河系調適與河口海域外水的交互影響,即須有河海共治之觀念;本研究採用「耦合河海水文模式」數值模擬法來探討,本耦合模式法具有模擬高強度、長延時、大範圍的極端降雨型態之特性,因此本研究首次引用2009年8月8日風災的林邊溪潰堤為模擬對象,利用林邊溪河口海域風場資料,結合海洋波浪模式(WWM)及暴潮模式(POM模式)的模擬分析,進行演算河口的最大暴潮水位,作為河道WASH123D模式執行林邊溪模擬潰堤、溢淹之結果時的下游邊界條件。
    以WASH123D模式模擬林邊溪河堤潰決結果,經探討得知其破壞機制(1)鐵路橋北側林邊堤防破堤及佳冬堤防潰堤確有河口暴潮位抑阻河川流量排入海面之情況,致河口水位抬升擁高,河川產生回水現象;當河口暴潮位退潮時,河川水位開始降低,此水動力衝擊作用形成堤內(堤心)滲流沖湧及河床坡趾淘刷之現象,造成邊坡結構塌陷致基礎滑動破壞堤防;(2)竹仔腳堤防潰堤係因新埤排水土堤先潰決,河水滿溢出來後,發現不斷掏空堤防臨陸面側之基腳,且潰堤處正好位於林邊溪轉彎的凹岸,本次降雨不但洪流量大而延時也長,故在水流侵襲、沖刷和彎道環流的作用下,加上臨陸面堤防基礎逐漸被淘刷使岸坡變陡,上層土體結構失穩致使竹仔腳堤防塌陷。

    Regarding the effects of rivers and seas to river drainage, the flood modeling usually assumes that the water of the rivers and seas does not invade to the internal water, or calculate the river/sea effect separately. However, the assumption is against the truth, and therefore cannot reflect the hydrodynamic phenomena of the coastal low-lying areas when experiencing drainage difficulty resulted from water surging at the sea estuary during the typhoons or storms. Consequently, it is necessary to simulate the river hydrodynamic with storm surge level derived from external and internal water coupling.
    In recently years, the severe Climate Change has caused extreme rainfall and frequent floods that seriously threaten coastal low-lying areas. It is not enough for old riverbank safety protection and river management to only focusing on embankment structure or river management itself. It is necessary to consider the interaction of river adjustment and external water from the seas through river estuary. In other words, the concept of “co-management of rivers and seas” needs to be applied. This study adopted numerical simulation based on “river and sea hydrology coupling model”, which was capable to simulate the hydrodynamic of the whole area of the rivers and seas under high intensity, long-lasting, and large range rainfall. The broken overflow conditions in Linbian Village of Kaohsiung in Taiwan during the typhoon disaster on 8th Aug. 2009 were taken as the simulation object. The wind field data of Linbian Creek estuary was integrated with typhoon wave model (WWMⅡ) and surge model (POM) for the simulation analysis and calculation of the maximum surge level of the river estuary. The results were used as the downstream boundary conditions when implementing simulation of broken overflow and flooding of Linbian Creek through waterway WASH123D model.
    The results of WASH123D model simulating the burst embankment of Linbina Creek indicated the damage mechanism as follows:
    1. The surge at estuary indeed prevented the river water from flowing into the sea. In consequence, the water level of the river was raised and caused backwater. When the surge ebbed away, the hydrodynamic impact caused by the descending water level resulted in seepage within the embankment (core) and toe scour. Therefore, the slope structure collapsed to cause the groundwork sliding and gradually led to Linbian Creek embankment breaking in the north of the Railway Bridge and burst embankment at Jiadong.
    2. The Jhuzihjiou Embankment burst resulted from the burst of Sinpi Drainage earthbank. The overflowing water kept scouring the bank foot on the side of the land, where was also the concave bank of Linbian Creek. Besides, the rainfall lasted for a very long time and caused great amount of flood water. The invading of the water flow, circulation at the river curves, and the scoured land-side embankment groundwork steepened the bank, unsettled the upper structure, and finally collapsed the Juzihjiou Embankment.

    中文摘要 I 英文摘要 Ⅱ 誌謝 Ⅲ 目錄 IV 表目錄 VII 圖目錄 VⅢ 符號說明 X 第一章 緒論 1 1-1 前言 1 1-2 研究動機與目的 1 1-3 本文組織 2 第二章 數值模式 4 2-1 模式應用回顧 4 2-1-1 河川水文模式(WASH123D) 4 2-1-2 海洋模式 5 2-1-2.1暴潮模式(POM) 5 2-1-2.2颱風波浪模式(WWM) 6 2-2 模式簡介 7 2-2-1 河川水文模式(WASH123D) 7 2-2-2 海洋模式 14 2-2-2.1暴潮模式(POM) 14 2-2-2.2颱風波浪模式(WWM) 19 2-3 耦合模式 21 2-3-1 前人研究 21 2-3-2 耦合模式演算流程 22 第三章 背景資料研究分析 24 3-1 莫拉克颱風造成林邊溪的洪氾資料 24 3-1-1 颱風動向與累積雨量 24 3-1-2 林邊溪堤防潰堤位置 28 3-2 河口海岸背景資料 30 3-2-1 海堤配置 30 3-2-2 莫拉克颱風期間海象資料 31 3-2-2.1波浪 31 3-2-2.2潮位 33 3-2-2.3重現期之暴潮偏差 33 3-3 林邊溪規劃報告相關資料 33 3-3-1 林邊溪河槽斷面資料 34 3-3-2 林邊溪相關支流排水 36 第四章 河口綜合暴潮位 37 4-1 暴潮潮位模擬分析 37 4-2 波浪波高模擬分析 40 4-3 波浪衍生水位揚升 42 4-4 河口綜合暴潮位 43 第五章 模擬結果分析與討論 45 5-1 模擬範圍 45 5-1-1 土地利用 46 5-1-2 格網建立 47 5-1-3 降雨設定 48 5-2 WASH123D模式檢定驗證 49 5-2-1 流量之驗證 49 5-2-2 淹水之驗證 49 5-3 WASH123D模擬潰堤位置水動力結果 51 5-4 潰堤位置水動力模擬分析討論 57 5-5 堤防潰決的機制 57 5-6 不同重現期下之溢淹狀況 59 第六章 結論與建議 62 6-1 結論 62 6-2 建議 63 參考文獻 64

    1. Bowen, A.J., Inman, D.L. and Simmons, V.P. (1968) “Wave set-down and set-up,” Journal of Geophysical Research, Vol. 73, pp. 2569–2577.
    2. Chien, C. H. (2002) “Application of 1-D Typhoon Surge Model to the Surrounding Coast of Taiwan,” Proceeding of the 24th Ocean Engineering Conference in Taiwan, pp8-14.
    3. Enright, D., Fedkiw, R., Ferziger, F. and Mitchell, I. (2002) “A hybrid particle level set method for improved interface capturing,” Journal of Computational Physics, Vol. 183, pp. 88-116.
    4. Hsu, T.-W., Tsai, C.-Y. and Lai, J.-W. (2009) “RANS modeling of solitary wave propagation over a submerged,” China Ocean Engineering, Vol. 23, No. 3, pp. 473-488.
    5. Hsu, T.-W., Liau, J.-M., Lin, J.-G., Zheng, J. and Ou, S.-H. (2011) “Sequentialassimilation in the wind wave model for simulations of typhoon events aroundTaiwan Island,” Ocean Engineering, Vol. 38, pp. 456-467.
    6. Matsumoto, K ., Takanezawa, T. and Ooe, M. (2000) “Ocean Tide Models Developed by Assimilating TOPEX/POSEIDON Altimeter Data into Hydrodynamical Model: A Global Model and a Regional Model around Japan,” Journal of Oceanography, Vol. 56, No. 5, pp. 567-581.
    7. Ou, S.-H., T.-W. Hsu, S.-Y. Tzang and J.-M. Liau (2002), Simulating typhoon waves by SWAN wave model in coastal waters of Taiwan, Ocean Engineering, Vol. 29, 947-971.
    8. Shih, D.-S., Hsu,T.-W. Chang, K.-C. and Juan, H.-L., (2012) “Implementing Coastal Inundation Data with an Integrated Wind Wave Model and Hydrological Watershed Simulations,” Terrestrial Atmospheric and Oceanic Sciences, Vol.23, pp.513-525.
    9. Shih, D.-S., Liau, J.M. and Yeh, G.-T., (2012) “Model Assessments of Precipitation with a Unified Regional Circulation Rainfall and Hydrological Watershed Model,” Journal of Hydrologic Engineering (ASCE), Vol. 17, pp.43-54.
    10. Shih, D.-S., and Yeh, G.-T. (2011) “Identified Model Parameterization, Calibrationand Validation of the Physically Distributed Hydrological Model, WASH123D in Taiwan.” Journal of Hydrologic Engineering (ASCE), Vol. 16, pp. 126-136.
    11. Shih, D.-S., Hsu, T.-W., Chang, K.-C. and Juan, H.-L. (2012) “Implementing CoastalInundation Data with an Integrated Wind Wave Model and Hydrological Watershed Simulations,” Terrestrial Atmospheric and Oceanic Sciences, Vol.23, pp.513-525.
    12. Tsai, C.-H., Tzang, S.-Y., Hsiao,S.-S., Cheng, C.-C. and Li, H.-W.(2006)“Coastal structure failures and coastal waves on the north coast of Taiwan due to typhoon Herb,” Journal of Coastal Research, Vol. 22, No. 2, pp. 393-405.
    13. Yanenko, N. N., Numerical Methods in Fluid Dynamics, MIR Publisher, Moscow (1986).
    14. Yeh, G. T., Huang, G. B., Zhang, F., Cheng, H. P., and Lin, H. C. (2006) “WASH123D: A Numerical Model of Flow, Thermal Transport, and Salinity, Sediment, and Water Quality Transport in WAterSHed Systems of 1-D Stream-River Network, 2-D Overland Regime, and 3-D Subsurface Media,” Technical Report Submitted To EPA, Dept. of Civil and Environmental Engineering, University of Central Florida, Orlando, Fla.
    15. Yeh, G.-T., Shih, D.-S. and Cheng, J.R.C. (2011) “An Integrated Media, IntegratedProcesses Watershed Model,” Computers and Fluids, Vol.45, pp.2-13.
    16. 石棟鑫、王毓麒、王豪偉、陳政欣,「災害防救應用科技方案『發展大氣-水文整合系統』成果報告書」,國家實驗研究院台灣颱風洪水研究中心,民國101年。
    17. 林敬傑、莊士賢、李汴軍、高家俊、楊益昇、陳柏彰,「風剪力對暴潮推算之影響」,第30屆海洋工程研討會論文集,第 135-140頁,民國97年。
    18. 林濤,「應用POM模式模擬淡水海岸颱風暴潮水位之研究」,國立台灣海洋大學碩士論文,民國95年。
    19. 邱銘達、高家俊、馮智源、江俊儒,「颱風暴潮數值推算準確度提升之研究」,第28屆海洋工程研討會論文集,第253-258頁,民國95年。
    20. 馮智源、高家俊、邱銘達、吳誌翰,「颱風暴潮數值推算之研究」,第27屆海洋工程研討會論文集,第275-282頁,民國94年。
    21. 許泰文、廖建明、李兆鑫,「以有限元素法推算台灣東北海岸之暴潮偏差」,中國土木水利工程學刊,第十一卷,第四期,第849-857頁,民國88年。
    22. 許泰文,「近岸水動力學」,中國土木水利工程學會,臺北市,民國92年7月。
    23. 許泰文,「近岸波場與水位揚升推算(III)」,行政院國家科學委員會專題研究計畫成果報告,民國94年10 月。
    24. 郭金棟,「海岸保護」,科技圖書,臺北市, 第82頁,民國93年4月。
    25. 楊偉甫、楊秉霖、許泰文、張國強、鄭欽韓,「結合風浪模式WWM及POM暴潮模式推估颱風波高與潮位」,第 31 屆海洋工程研討會論文集,頁157-162,民國98年。
    26. 楊秉霖、 Aron Roland、 許泰文 、Alexander V. Babanin 、陳易鋒 (2010),「WWM II 模式中不同碎波消散項對週期之影響」,第 32 屆海洋工程研討會論文集,頁31-36。
    27. 經濟部水利署,「運用潮位與衛星資料推估海平面變遷量技術之研發報告」,民國99年12月。
    28. 經濟部水利署,「強化台灣西南地區因應氣候變遷海岸災害調適能力研究計畫」,民國100年12月。
    29. 經濟部水利署,「因應氣候變遷區域淹水模擬與災害管理規劃技術研究」,民國100年。
    30. 經濟部水利署水利規劃試驗所,「屏東縣管河川林邊溪水系治理規劃報告(林邊溪主支流)」,民國98年8月。。
    31. 經濟部水利署水利規劃試驗所,「海岸防護先期規劃研究報告」,民國100年12月。
    32. 廖建明、歐善惠、許泰文、方介群、臧效義,「應用SWAN模式模擬台灣附近颱風波浪之特性」,第24屆海洋工程研討會, 第469-476頁,民國92年。
    33. 歐善惠、許泰文、臧效義,「東北海岸防波堤颱風波浪與暴潮合成作用力評估」,交通部科技顧問室,財團法人成大研究發展基金會,民國88年。
    34. 謝承翰、臧效義、陳大煒,「應用POM模式探討於颱風期間林邊溪河口水域之水位與流場」,第 33 屆海洋工程研討會論文集, 第193-198頁,民國100年。

    下載圖示 校內:2016-09-09公開
    校外:2016-09-09公開
    QR CODE