簡易檢索 / 詳目顯示

研究生: 魏崇渝
Wei, Chung-Yu
論文名稱: 二維次波長金屬結構之點波源模型
The Point Source Model for the Two-dimensional Sub-wavelength Structure
指導教授: 陳寬任
Chen, Kuan-Ren
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 31
中文關鍵詞: 次波長結構點波源模型
外文關鍵詞: sub-wavelength, point source model
相關次數: 點閱:89下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以單一點波源模型建構電磁波穿過完美導體之次波長聚焦結構後其磁場空間分佈為主要目的。其中,此完美導體結構為一次波長狹縫與單一金屬凹槽構成。透過能量流守恆,藉由小系統的模擬得到穿透狹縫後的總能量流,得出單一點波源模型之振幅,最後成功地建立起符合電磁波數值模擬的磁場分佈。此外我們藉由理論計算分析金屬凹槽內部電磁波之相位與能量關係,我們發現狹縫與凹槽間距不影響由凹槽輻射至遠場的能量比例,且其能量比只與凹槽深度所造成之電磁波相位差有關。我們以相較以往簡單明確的方式,建構出能夠減少大量運算時間支點波源模型;透過此方法,我們相信能應用於更多有關本結構的光學特性,以增加我們對次波長動力學與相關方面的瞭解。

    We constructed the spatial distribution of the magnetic field caused by an electromagnetic wave going through a sub-wavelength focusing structure in a perfect electrical conductor (PEC) film with a single point source model. Through the whole process, we hope to understand more about sub-wavelength wave mechanics.
    The total energy flow through the slit is obtained from a small system simulation, and the amplitude of the single point source model is obtained by the conservation of energy flow. In addition, by theoretically analyzing the relationship between the phase and energy of the electromagnetic wave in the metal groove, we find that the distance between the slit and the groove does not affect the ratio of the energy radiated from the groove to the far field. The energy ratio is only caused by the groove depth because of the phase difference of the electromagnetic wave. We have built a fulcrum wave source model that can reduce a large number of computations over simple and straightforward approaches; by this method, we believe it can be applied to more of the optical properties of the structure to increase our understanding of subwavelength dynamics.

    口試合格證明 I 中文摘要 II 英文延伸摘要 III 致謝 XI 第一章. 序論 1 第二章. 單狹縫點波源模型 3 2.1 . 點波源模型簡介 3 2.1.1 . 傳統點波源模型 3 2.1.2 . 點波源模型近似 5 2.2 . FDTD模擬環境與座標系統 10 2.3 . 模型建置 14 2.3.1 . 振幅的決定與相位調整 14 2.4 . 結構參數對狹縫出口處場型之影響 16 2.4.1 . 狹縫寬度 16 2.4.2 . 空間解析度 17 2.5 . 模型與模擬結果比較 18 第三章. 單狹縫與單一金屬凹槽之點波源模型 20 3.1 . 結構定義 20 3.2 . 凹槽輻射到遠場能量 20 3.3 . 結構參數對狹縫與凹槽出口處場型之影響 24 3.3.1 . 狹縫與凹槽間距 24 3.3.2 . 凹槽深度 25 3.3.3 . 入射波長 26 3.4 . 模型與FDTD模擬結果比較 27 第四章. 結論 29 參考文獻 30

    [1] C. Huygens (1690). “Traitė de la Lumiere,” Leyden.
    [2] Wikimedia Foundation, Inc., (2014 May), “Huygens-Fresnel principle,” 2014 Jul, retrieved from: http://en.wikipedia.org/wiki/Huygens-Fresnel_principle
    [3] A. Fresnel (1816). “Ann Chim et Phys,” Oeuvres, Vol. 1, 89, 129.
    [4] Math Pages, (n. d.), “Huygens' principle,” 2014 Jul, retrieved from: http://www.mathpages.com/home/kmath242/kmath242.htm
    [5] T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio and P. A. Wolff (1998). "Extraordinary optical transmission through sub-wavelength hole arrays." Nature 391(6668): 667-669.
    [6] F. J. García-Vidal and L. Martín-Moreno (2002). "Transmission and focusing of light in one-dimensional periodically nanostructured metals." Physical Review B 66(15): 155412.
    [7] H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal and T. W. Ebbesen (2002). "Beaming Light from a Subwavelength Aperture." Science 297(5582): 820-822.
    [8] Y. Qi, J. Miao, S. Hong and M. M. Tentzeris (2010). "Characterization of Extraordinary Transmission for a Single Subwavelength Slit: A Fabry-Prot-Like Formula Model." IEEE Transactions on Microwave Theory and Techniques 58(12): 3657-3665.
    [9]K. Y. Kim, A. V. Goncharenko, J. S. Hong and K. R. Chen (2011). "Near-field Characterization on Light Emanated from Subwavelength Plasmonic Double Slit of Finite Length." Journal of the Optical Society of Korea 15(2): 196-201.
    [10] D. Halliday, R. Resnick and J. Walker. “Principles of physics,” John Wiley & Sons, Inc., Asia, 992-994 (9th edition).
    [11] E. Betzig, A. Harootunian, A. Lewis and M. Isaacson (1986). "Near-field diffraction by a slit - implications for superresolution microscopy." Applied Optics 25(12): 1890-1900.
    [12] F. T. Lin (2014). “A New Point Source Model for the Three-dimensional Sub-wavelength Rectangular Aperture,” National Cheng Kung University.
    [13] K. S. Yee (1966). “Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media,” IEEE Trans. Antennas Propagat., 14(3), 307-307.

    [14] R. Courant, K. Friedrichs and H. Lewy (1928). “Uber die partiellen Differentialgleichungen der mathematischen Physik,” Math. Ann., v. 100, p. 32-74. MR 1512478
    [15] J. Berenger (1994), “A perfectly matched layer for the absorption of electromagnetic waves,” Journal of Computational Physics 114 (2): 185–200.
    [16] S. H. Chang and Y. L. Su (2015). "Mapping of transmission spectrum between plasmonic and nonplasmonic single slits. II: nonresonant transmission." Journal of the Optical Society of America B 32(1): 45-51.
    [17] J. S. Hong and K. R. Chen (2017), "Light diffraction by a slit and grooves with a point source model based on wave dynamics," Phys. Rev. A 96 043813

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE