簡易檢索 / 詳目顯示

研究生: 陳楠凱
Chen, Nan-Kai
論文名稱: 摻硫及鋰的FeSe之合成及性質研究
Preparation and Characterization of S and Li doped FeSe
指導教授: 齊孝定
Qi, Xiao-Ding
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 82
中文關鍵詞: 硒化鐵鐵基超導體
外文關鍵詞: FeSe, iron-based superconductor
相關次數: 點閱:53下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究藉由摻雜硫或氫氧化鋰,來改善硒化鐵的超導性質。硒化鐵存在有幾種不同的相結構,其中富鐵的相為超導相,而缺鐵的δ相為非超導的磁性相。伴隨著摻雜硫和氫氧化鋰的量增加,形成超導相所需的燒結條件和成份配比也需隨之改變,尤其鐵對其他元素的比例要有所增加。對摻雜後的樣品進行結構分析發現,隨著硫含量的增加,其結構ab平面逐漸縮小,c軸逐漸拉長,但整體體積呈縮小趨勢。對於摻雜氫氧化裡的樣品而言,隨著摻雜量的增加,不僅ab平面縮小,c軸也變短。藉由測量磁化率隨溫度的變化曲線發現,摻雜10-15%硫的樣品其超導轉換溫度(Tc)略有提高,約為9.0K左右;而摻雜20%氫氧化鋰的樣品其Tc可進一步提高至9.1K。
    本研究還利用助熔劑法對摻雜的硒化鐵進行液相晶體成長。液相成長的樣品其結晶性有顯著提高,晶粒在100m數量級,而固相燒結的樣品僅有10nm左右。藉由歐傑電子能譜分析,可發現進行液相成長後的硒化鐵厚膜,其上確實有鋰的存在,顯示鋰並沒有因高溫而全部揮發不見。摻雜10-15%硫的樣品,經液相成長後Tc提升至9.3K,摻雜氫氧化鋰的樣品,Tc也略有改善。這與純硒化鐵不同,其液相成長的樣品Tc反而有所下降。

    In this study, FeSex was doped with S and LiOH in order to improve the superconducting properties. There exist a few different phases for FeSex. The Fe-rich  phase is superconductive, while the Fe-deficient  phase is non-superconductive and ferrimagnetic. As the doping amount of S or LiOH increased, the composition and sintering condition for achieving the superconductive phase had to change as well. In particular, the ratio of Fe against the rest of the elements had to increase. Structural analysis on the doped samples showed that as the S content increased the a-b axes of the unit cell reduced, whereas the c axis increased. However, the overall volume of the structure was decreased gradually. For the LiOH doped samples, all the a, b and c axes were reduced. The superconducting transition temperature (Tc) was determined from the magnetic susceptibility vs. temperature measurements. The Tc of 10-15% S doped samples was increased slightly, to about 9.0 K. However, the Tc of 20% LiOH doped samples was raised further to 9.1 K.
    Attempts were made to grow the thick films of the doped FeSex from high temperature solution. The samples grown from the high temperature liquid showed a much better crystallinity, with the grain size in the order of 100 m, compared to the 10 nm for the sintered powders. Auger electron spectroscopy confirmed that the thick FeSex films indeed contained Li ions, eliminating the speculation that Li might evaporate totally during the growth at high temperature. The Tc of the 10-15% S doped thick films were 9.3 K, higher than the sintered powder samples. The Tc of the LiOH doped thick films was also improved slightly. This was different from the result for the pure FeSex thick films, for which the Tc of the thick films grown from the high temperature liquid was lower than the sintered powders.

    摘要 II Abstract III 致謝 IV 總目錄 V 表目錄 IX 圖目錄 X 第一章 前言 1 第二章 理論基礎與文獻回顧 3 2.1 超導體的介紹 3 2.2 超導體的特性 3 2.3 超導基礎理論 7 2.3.1 BCS理論 7 2.3.2 二流體模型 8 2.3.3 熱力學和超導的關係 9 2.4 超導體類型 10 2.5 高溫超導體 13 2.5.1 REBCO體系9 13 2.5.2 鐵基體系 13 2.6 釘扎中心、臨界電流與約瑟芬效應 17 2.6.1 釘札中心與臨界電流 17 2.6.2 約瑟芬效應(Josephson Effect) 17 2.7 磁性簡介 19 2.8 FeSe單晶生長 20 2.8.1 晶體成長方式 20 第三章 實驗方法與特性分析 22 3.1 實驗之藥品、材料及儀器設備 22 3.2 實驗流程 22 3.2.1 固相燒結之製備流程 22 3.2.2 晶體之成長與液相磊晶生長 23 3.3 材料性質分析 24 3.3.1 相結構分析 24 3.3.2 顯微組織觀察 24 3.3.3 表面形貌與成分分析 24 3.3.4 歐傑電子光譜 25 3.3.5 超導性質檢測 25 3.3.6 晶體方向排列與相鑑定 26 第四章 結果與討論 32 4.1 FeSe的燒製 32 4.1.1 FeSe相鑑定分析 33 4.1.2 FeSe表面形貌與組成分析 33 4.2 摻雜對於FeSe影響之研究 37 4.2.1 摻雜硫 37 4.2.2 摻雜氫氧化鋰 41 4.3 摻雜後的FeSe表面形貌與組成成分分析 43 4.3.1 摻雜與晶格常數改變 46 4.3.2 摻雜硫及氫氧化鋰之超導性質分析 51 4.4 液相磊晶成長 53 4.4.1 晶體成長之表面形貌與組成成分分析 55 4.4.1.1 液相膜成長於氧化鋁基板 55 4.4.1.2 液相膜成長於鋁酸鑭基板 61 4.4.2 光學顯微組織觀察 65 4.4.3 晶體成長後的超導性質 68 4.5 歐傑電子能譜儀分析 73 4.6 EBSD 76 第五章 結論 78 第六章 參考文獻 79

    [1] J.G.Bednorz , K.A. muller , “Flux trapping and superconductive glass state in La2CuO4-y:Ba ”Phys. Rev. Lett. 58, 1143 (1987).
    [2] M.K. Wu, J.R. Ashburn, “superconductivity at 93K in a new mixed phase Y-Ba-Cu-O superconducting compound system”, Phys. Rev. Lett. 58,908. (1987).
    [3] J.Bardeen, L.N.Cooper, J.R.Schrieffer, “Microscopic Theory of superconductivity”, Phys.Rev.106,162 (1957).
    [4] Y. Kamihara, H.Hiramatsu, M. Hirano, R. Kawamura, H.Yanagi, T.Kamiya, H.Hosono, “Iron-Based Layered Superconductor:LaOFeP”, J.AM. CHEM. SOC.,128,10012-10013,(2006).
    [5] Y. Kamihara, T. Watanabe, M. Hirano, H. Hosono, “Iron-Based Layered Superconductor La[O1-xFx]FeAs (x = 0.05−0.12) with Tc = 26 K”, J.AM. CHEM. SOC.,130,3296-3297,(2008).
    [6] F. C. Hsu, J. Y. Luo, K. W. Yeh, T. K. Chen, T. W. Huang, P. M. Wu, Y. C. Lee, Y. L. Huang, Y. Y. Chu, D. C. Yan, M. K. Wu, “Superconductivity in the PbO-type structure alpha-FeSe”,Proceedings of the National Academy of Sciences of the United States of America,105,14262-14264,(2008).
    [7] Y. Mizuguchi, “superconductivity at 27K in tetragonal FeSe under huge pressure”, Applied Physics Letters 93.152505(2008).
    [8] M. Cyrot and D. Pavuna, “Introduction to Superconductivity and High-Tc Materials”,World Scientific, (1992).
    [9] 下山淳一著,王政友譯, “圖解超導體”,世茂,(2007).
    [10] 郭衛紅,汪濟奎, “現代功能材料及其應用”,曉園,(2006).
    [11] 張裕恆,李玉芝, “超導物理”,(1992).
    [12] M.Tinkham, “Introduction to Superconductivity”, McGraw-Hill,Inc. (1996).
    [13] C. Kittel, “Introduction to solid state physical”,Wiley,(2005).
    [14] 楊佳明, “新型鐵基超導材料FeSe之性質研究”,成大碩士論文,(2009).
    [15] Y. Kamihara, M. Hirano, H. Yanagi, T. Kamiya, Y. Saitoh, E. Ikenaga, K. Kobayashi, and H. Hosono,“Electromagnetic properties and electronic structure of the iron-based layered superconductor LaOFeP” J.AM. CHEM. SOC.,128,(2006)
    [16] Q. J. Feng, D. Z. Shen, J. Y. Zhang, B. S. Li, B. H. Li, Y. M. Lu, X. W. Fan, H. W. Liang, “Ferromagnetic FeSe:Structural, electrical, and magnetic properties”,Applied Physics Letters,88,(2006).
    [17] P.Villars, L.D.Calvert, “Pearson's handbook of crystallographic data for intermetallic phases”, ASM International, 1991.
    [18] T. M. McQueen, A. J. Williams, P. W. Stephens, J. Tao, Y. Zhu, V. Ksenofontov, F. Casper, C. Felser, R. J. Cava, “Tetragonal-to-Orthorhombic Structural Phase Transition at 90 K in the Superconductor Fe1.01Se”, Phys. Rev. Lett.,103,(2009).
    [19] J. R. Shrieffer, & J. S. Brooks, “Handbook of High-Temperature Superconductivity”,Springer,( 2006).
    [20] S. I. Vedeneev, et al. “Reaching the Pauli limit in the cuprate Bi2Sr2CuO6+ in high parallel magnetic fields”, Phys. Rev. B 73, 014528 (2006).
    [21] Nam, M. S. et al. “Angle dependence of the upper critical field in the layered organic superconductor tetrathiafulvalene” ,J. Phys. Condens. Matter 11, L477–L484 (1999).
    [22] H. Okamoto, “Journal of Phase Equilibria”,Journal of Phase Equilibria, Volume 12, Number 3, 383-389,(1991).
    [23]解思深, “高溫超導”,牛頓,(1996).
    [24] B.D. Josephson , “Supercurrents through barriers” , Adv.phys., 14, 419, (1965).
    [25] B.D Josephson, “couplesuperconductors” ,Rev.Mod.Phys.,36,216.(1964).
    [26] B.D. Cullity, “Introduction to Magnetic Materials”,Addison Wesley,New York,(1972).
    [27] D. E. H.J.Scheel, “Crystal Growth from High Temperature Solution”, Academic Press London,(1975).
    [28] Y. Mizuguchi, F. Tomioka, S. Tsuda, T. Yamaguchi, Y. Takano, “Substitution Effects on FeSe Superconductor”,Journal of the Physical Society of Japan,78,074712,(2009).
    [29] X.Qi, “Growth and optical characterization of novel crystals for applications in lasers and non-linear optics”,(1996).
    [30] C. W. Chu, B. Lorenz, “High pressure studies on Fe-pnictide superconductors”,Physica C:Superconductivity,469,385-395,(2009).
    [31] X.Qi, J.L. MacManus-Driscoll, “Liquid phase epitaxy processing for high temperatures superconductor tapes”, Current Opinion in Solid State and Materials Sciences,5,291-300,(2001).
    [32] P. Villars, A. Prince, H. Okamoto, “Handbook of ternary alloy phase diagrams”, ASM international,(1995).
    [33] 洪綮嶸, “利用固相燒結法製備FeSe及其超導性值之研究”,成大碩士論文, (2009).

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE