| 研究生: |
王冠智 Wang, Kuan-Chih |
|---|---|
| 論文名稱: |
研究摻雜和未摻雜的氧化鉿鋯鐵電電容在低溫下切換速度的特性 Impacts on Switching Speed of MFM Capacitors with Y-doped & Undoped HZO at Cryogenic Temperatures |
| 指導教授: |
高國興
Kao, Kuo-Hsing |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2024 |
| 畢業學年度: | 112 |
| 語文別: | 英文 |
| 論文頁數: | 64 |
| 中文關鍵詞: | 鐵電電容 、低溫操作 、NLS切換速度 、2Pr 、Ec |
| 外文關鍵詞: | ferroelectric capacitor, low-temperature operation, NLS switching speed, 2Pr, Ec |
| 相關次數: | 點閱:52 下載:10 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在近幾年,量子電腦與高效能運算電腦 盛行, 需要有良好的低溫資料儲存技術來支援龐大的運算量。但是,量子電腦 以及高效能運算電腦在目前是適合操作在低溫環境下,量子電腦是為了讓 qubit有更低的熱擾動影響,而高效能運算電腦為的是追求更佳的效能。在這前提下,需要發展良好的低溫記憶體元件來輔助量子電腦和高效能運算電腦。
在此篇研究中,我們使用了HfZrO2 (HZO)和 Yttrium-doped HfZrO2的鐵電薄膜電容 。因為鐵電材料記憶體是最有前途的儲存設備,他擁有 低功耗、 切換速度快速 (ns 範圍的切換時間 )、耐久度高和長達 10年的保留時間的優點。
為了了解HfZrO2 和 Yttrium-doped HfZrO2的鐵電薄膜電容在低溫下的切換速度的特性,在本研究使用了 NLS的量測方式,去探討不同的供給電壓 、溫度以及是否參雜 Yttrium會如何影響鐵電薄膜電容的切換速度。
In recent years, quantum computers and high-performance computing (HPC) systems have gained popularity, necessitating advanced cryogenic data storage technologies to support the immense computational workload. Quantum computers require operation in cryogenic temperature environments to minimize thermal disturbances on qubits, while HPC systems benefit from operating at low temperatures to achieve better performance. Consequently, developing effective cryogenic memory devices is crucial to support both quantum computers and HPC systems.
In this study, we utilized ferroelectric thin-film capacitors made of HfZrO2 (HZO) and Yttrium-doped HfZrO2. Ferroelectric memory devices are among the most promising storage solutions due to their low power consumption, fast switching speeds (in the nanosecond range), high endurance, and data retention capability of up to 10 years.
To understand the switching speed characteristics of HfZrO2 and Yttrium-doped HfZrO2 ferroelectric thin-film capacitors at cryogenic temperatures, we employed the Nucleation Limited Switching (NLS) measurement method. This study explores how different applied voltages, temperatures, and Yttrium doping levels affect the switching speed of ferroelectric thin-film capacitors.
1. ORNL Launches Summit Supercomputer. Available from: https://www.ornl.gov/news/ornl-launches-summit-supercomputer.
2. Google demonstrates vital step towards large-scale quantum computers. Available from: https://www.newscientist.com/article/2283945-google-demonstrates-vital-step-towards-large-scale-quantum-computers/.
3. What is a quantum computer? ; Available from: https://www.newscientist.com/question/what-is-a-quantum-computer/.
4. ; Available from: https://www.charmingscitech.nat.gov.tw/post/research5-quantum-computer.
5. Cryo-CMOS circuits for qubit readout and control. Available from: https://www.epfl.ch/labs/aqua/research/cryo/mosquito/.
6. Full stack ahead: Pioneering quantum hardware allows for controlling up to thousands of qubits at cryogenic temperatures. Available from: https://www.microsoft.com/en-us/research/blog/full-stack-ahead-pioneering-quantum-hardware-allows-for-controlling-up-to-thousands-of-qubits-at-cryogenic-temperatures/.
7. Charbon, E., et al. Cryo-CMOS for quantum computing. in 2016 IEEE International Electron Devices Meeting (IEDM). 2016. IEEE.
8. Masanet, E., et al., Recalibrating global data center energy-use estimates. Science, 2020. 367(6481): p. 984-986.
9. Patra, B., et al., Cryo-CMOS circuits and systems for quantum computing applications. IEEE Journal of Solid-State Circuits, 2017. 53(1): p. 309-321.
10. Tahara, S., et al., A 4-kbit Josephson nondestructive read-out RAM operated at 580 psec and 6.7 mW. IEEE transactions on magnetics, 1991. 27(2): p. 2626-2633.
11. Song, Y.-J., et al., What lies ahead for resistance-based memory technologies? Computer, 2013. 46(8): p. 30-36.
12. Henkels, W., et al. A low temperature 12 ns DRAM. in International Symposium on VLSI Technology, Systems and Applications. 1989. IEEE.
13. Bae, J.-H., et al., Characterization of a capacitorless DRAM cell for cryogenic memory applications. IEEE Electron Device Letters, 2019. 40(10): p. 1614-1617.
14. Tarkov, M., et al., Ferroelectric Devices for Content-Addressable Memory. Nanomaterials, 2022. 12(24): p. 4488.
15. Chen, Y.-C., et al. NLS based Modeling of Temperature-dependent Phase Transition Characteristics for Antiferroelectric/Ferroelectric Hafnium Zirconium Oxides. in 2023 International VLSI Symposium on Technology, Systems and Applications (VLSI-TSA/VLSI-DAT). 2023. IEEE.
16. Florent, K., Ferroelectric HfO 2 for Emerging Ferroelectric Semiconductor Devices. 2015: Rochester Institute of Technology.
17. Florent, K., Evaluation of Alternative Vertical Transistors for 3D NAND Applications. 2019.
18. A brief discussion on ferroelectric memory: How to realize the next generation of "in-memory computing"? ; Available from: https://technews.tw/2022/02/22/the-next-trend-feram/.
19. Grimley, E.D., et al., Structural changes underlying field‐cycling phenomena in ferroelectric HfO2 thin films. Advanced Electronic Materials, 2016. 2(9): p. 1600173.
20. Onodera, A. and M. Takesada, Ferroelectricity in Simple Binary Crystals. Crystals, 2017. 7(8): p. 232.
21. Pesic, M., et al. Root cause of degradation in novel HfO 2-based ferroelectric memories. in 2016 IEEE International Reliability Physics Symposium (IRPS). 2016. IEEE.
22. Pešić, M., et al., Physical mechanisms behind the field‐cycling behavior of HfO2‐based ferroelectric capacitors. Advanced Functional Materials, 2016. 26(25): p. 4601-4612.
23. Popovici, M.I., et al., High-endurance ferroelectric (La, Y) and (La, Gd) Co-doped hafnium zirconate grown by atomic layer deposition. ACS Applied Electronic Materials, 2022. 4(4): p. 1823-1831.
24. Walke, A.M., et al., Electrical investigation of wake-up in high endurance fatigue-free La and Y doped HZO metal–ferroelectric–metal capacitors. IEEE Transactions on Electron Devices, 2022. 69(8): p. 4744-4749.
25. Tagantsev, A.K., et al., Non-Kolmogorov-Avrami switching kinetics in ferroelectric thin films. Physical Review B, 2002. 66(21): p. 214109.
26. Courtens, E., Scaling dielectric data on Rb 1− x (NH 4) x H 2 PO 4 structural glasses and their deuterated isomorphs. Physical Review B, 1986. 33(4): p. 2975.
27. Gong, N., et al., Nucleation limited switching (NLS) model for HfO2-based metal-ferroelectric-metal (MFM) capacitors: Switching kinetics and retention characteristics. Applied Physics Letters, 2018. 112(26).
28. Stolichnov, I., et al., Physical model of retention and temperature-dependent polarization reversal in ferroelectric films. Journal of applied physics, 2005. 98(8).
29. B1500A Semiconductor Device Parameter Analyzer. Available from: https://www.keysight.com/tw/zh/products/parameter-device-analyzers-curve-tracer/precision-current-voltage-analyzers/b1500a-semiconductor-device-parameter-analyzer.html.
30. EasyEXPERT group+ software. Available from: https://www.keysight.com/tw/zh/products/software/application-sw/easyexpert-group-device-characterization-software/easyexpert-group-software-pc.html.
31. SciPy documentation. Available from: https://docs.scipy.org/doc/scipy/.
32. SciPy | Curve Fitting. Available from: https://www.geeksforgeeks.org/scipy-curve-fitting/?ref=ml_lbp.
33. Li, H., Y. Guo, and J. Robertson, Dopant compensation in HfO2 and other high K oxides. Applied Physics Letters, 2014. 104(19).
34. Willmott, C.J. and K. Matsuura, Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance. Climate research, 2005. 30(1): p. 79-82.