簡易檢索 / 詳目顯示

研究生: 杜俊誼
Du, Jiun-Yi
論文名稱: 以能量為基礎之雙連桿倒單擺系統甩上平衡控制
Swing Up and Balance Control of Double Link Inverted Pendulum Systems via the Energy-based Approach
指導教授: 何明字
Ho, Ming -Tzu
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 162
中文關鍵詞: 無線雙連桿倒單擺
外文關鍵詞: pendulum, wireless
相關次數: 點閱:109下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 倒單擺系統(inverted pendulum system)在控制領域上是一常見的教學及實驗平台,本論文所研究的主題雙連桿倒單擺系統即是倒單擺系統的其中一種,雙連桿倒單擺系統是由兩個同一平面運動的連桿所組成的,而本論文主要的研究目的在於將雙連桿倒單擺甩上至不穩定的平衡點,並將其平衡於平衡點。在本論文中,平衡控制器是採用LQR控制理論,甩上控制器則分別以部份回授線性化(partial feedback linearization)法與能量方法(energy-based)為基礎分別設計。然後利用MATLAB/Simulink做系統甩上控制與平衡控制的模擬,實作方面以C語言來實現所有控制演算法,透過TMS320F2812 DSP控制板來提供系統控制力的運算及輸出,再搭配D/A轉換電路以及馬達驅動電路,來驅動直流馬達帶動雙連桿倒單擺完成甩上及平衡的控制動作。此外,本論文有別於傳統雙連桿倒單擺系統,所採用的有線傳輸的方式傳送未致動連桿的位置資訊,而改採用無線傳輸的方式傳送,以解決傳輸線干擾系統動態的問題。

    The inverted pendulum system is a common platform for control education and control experiments. The theme of this thesis is to study the control problem of the double link inverted pendulum system which is one kind of inverted pendulum system. The double link inverted pendulum system has two links moving on the same plane. The main control objective is to swing up and then keep the links at equilibrium positions (top position and middle position) through controlling a DC motor. In this thesis, the balance controller is based on LQR control law. The swing up controller is based on partial feedback linearization and an energy-based approach. MATLAB/Simulink are used to simulate the swing up control and balance control system . In the experiment, the control law is implemented using a digital signal processor. The DC motor is driven by the D/A converter and motor driver to provide the control force. Furthermore, the transmission of the link position data is implemented by wireless transmission to solve the problem of the disturbance caused by the transmission line.

    中文摘要....................................................I 英文摘要...................................................II 誌謝.......................................................III 目錄.......................................................IV 圖表目錄..................................................VII 第一章 緒論..............................................1-1 1-1 研究背景............................................1-1 1-2 研究動機............................................1-1 1-3 研究目的............................................1-3 1-4 研究步驟............................................1-3 1-5 相關文獻回顧........................................1-6 1-6 本實驗室之相關成果..................................1-6 1-7 本文結構............................................1-7 第二章 雙連桿倒單擺系統數學模型建立.......................2-1 2-1 前言................................................2-1 2-2 雙連桿倒單擺系統機構部分之數學模型建立..............2-1 2-2-1 系統參數定義...................................2-1 2-2-2 雙連桿倒單擺系統運動方程式.....................2-2 2-3 永磁式直流馬達數學模型之建立........................2-6 2-4 永磁式直流馬達參數鑑別..............................2-8 2-5 雙連桿倒單擺系統完整之數學模型.....................2-13 2-6 雙連桿倒單擺系統平衡點分析........................2-14 第三章 甩上平衡控制器設計.................................3-1 3-1 前言................................................3-1 3-2 LQR控制器設計.....................................3-1 3-3 甩上控制器設計......................................3-8 3-3-1 以部份回授線性化為基礎之甩上控制器設計.........3-8 3-3-2 Homoclinic orbit介紹.......................3-11 3-3-3 雙連桿倒單擺系統之系統能量推導................3-14 3-3-4 以系統能量為基礎之甩上控制器設計..............3-18 3-3-5 穩定度分析....................................3-23 3-4 切換控制...........................................3-30 第四章 無線傳輸電路製作...................................4-1 4-1 前言................................................4-1 4-2 無線傳輸模組介紹....................................4-1 4-2-1 模組基本介紹...................................4-1 4-2-2 Configuration Mode.............................4-5 4-2-3 Active Mode...................................4-7 4-3 無線傳輸電路硬體元件與整體架構.....................4-13 4-4 雜訊處理...........................................4-19 4-5 無線傳輸電路實際傳輸測試結果.......................4-21 第五章 硬體電路及軟體程式介紹.............................5-1 5-1 前言................................................5-1 5-2 硬體電路..........................................5-1 5-2-1 TMS320F2812核心..............................5-1 5-2-1-1 QEP介面...............................5-2 5-2-1-2 ADC介面...............................5-3 5-2-1-3 SPI 介面..............................5-7 5-2-1-4 SCI介面...............................5-10 5-2-1-5 PWM介面............................5-13 5-2-2 週邊硬體電路..................................5-17 5-2-2-1 解碼電路設計..........................5-17 5-2-2-2 PWM驅動電路.........................5-21 5-2-2-3 數位/類比驅動電路......................5-23 5-2-2-4 使用者輸入/輸出介面電路................5-27 5-2-2-5 USB介面電路..........................5-28 5-2-2-6 資料傳輸之封包定義與交握協定..........5-29 5-2-2-7實際系統電路..........................5-32 5-3 軟體程式......................................5-34 5-3-1 Code Composer Studio簡介......................5-34 5-3-2 程式發展流程...............................5-37 第六章 模擬結果與實作結果.................................6-1 6-1 前言................................................6-1 6-2 模擬結果...........................................6-1 6-3 機構介紹..........................................6-7 6-4 實作結果..........................................6-12 第七章 結論與未來展望.....................................7-1 7-1 結論................................................7-1 7-2 未來展望............................................7-1 參考文獻 附錄A GFSK調變技術介紹 自述

    [1] K. Craig and S. Awtar, “Inverted Pendulum Systems: Rotary and Arm-driven, A Mechatronics System Design Case Study,” Mechatronics, Vol.12, No.2, pp. 357-370, 2002.
    [2] T. P. Wilfredo and R. G. Oscar, “Nonlinear Control of Swing-Up Inverted Pendulum,” Proceedings of the 1996 IEEE International Conference on Control Applications, pp. 259-264, 1996.
    [3] K. Xu and X. D. Duan, “Comparative Study of Control Methods of Single-rotational Inverted Pendulum,” Proceedings of the First International Conference on Machine Learning and Cybernetics, pp. 776-778, 2002.
    [4] G. Du, N. Hung, G. Wu, P. Zhang, Z. Oing, and D. Sun, “The Rotational Inverted-pendulum Based on DSP Controller,” Proceedings of the World Congress on Intelligent Control and Automation, pp. 3101-3105, 2002.
    [5] M. W. Spong and D. J. Block, “The Pendubot: A Mechatronic System for Control Research and Education,”Proceedings of the 34th Conference on Decision & Control, pp. 555-556, 1995.
    [6] I. Fantoni, R.Lozano, and M. W. Spong, “Energy Based Control of the Pendubot, ” IEEE Trans. Automat. Contr, Vol. 45, No.4, pp. 725-729, 2000.
    [7] M. W. Spong, “Swing Up Control of Acrobot, ”Proceedings of the 1994 IEEE Int. Conf. on Robotics and Automation, pp. 2356-2361, San Diego, CA, 1994.
    [8] M. Bugeja, “Non-linear Swing-Up and Stabilizing Control of an Inverted Pendulum System,” B. Eng.(Hons.) Thesis, University of Malta, Msida, Malta, May 2002.
    [9] 林鈺翔,「雙連桿倒單擺系統甩上與平衡控制」,國立成功大學工程科學系碩士論文,民國九十一年。
    [10] 洪介仁,「車與桿倒單擺系統之平衡控制」,國立成功大學工程科學系碩士論文,民國九十二年。
    [11] 詹富強,「以數位信號處理器為基礎單板獨立旋轉型倒單擺甩上與平衡控制系統之實現」,國立成功大學工程科學系碩士論文,民國九十三年。
    [12] M. Cross, “Chaos on the Web Physics 161: Introduction to Chaos,” http://www.cmp.caltech.edu/~mcc/Chaos_Course/Outline.html.
    [13] M. W. Spong, “The Control of Underactuated Mechanical System,” Plenary Lecture at the First International Conference on Mechatromics, Mexico City, pp. 26-29, 1994.
    [14] TMSS320F2812 Digital Signal Processors Data Manual, Texas Instruments Inc.,April 2001.

    下載圖示 校內:2007-08-30公開
    校外:2010-08-30公開
    QR CODE