簡易檢索 / 詳目顯示

研究生: 江柏勳
Jiang, Bo-Hsun
論文名稱: 黑潮與渦漩交互作用下的流場與能量變化
A Study of Flow Field and Kinetic Energy Conversion During the Eddy-Kuroshio Interaction
指導教授: 陳佳琳
Chen, Jia-Lin
學位類別: 碩士
Master
系所名稱: 工學院 - 水利及海洋工程學系
Department of Hydraulic & Ocean Engineering
論文出版年: 2025
畢業學年度: 112
語文別: 中文
論文頁數: 73
中文關鍵詞: 反氣旋渦漩渦漩半徑渦漩能量黑潮地轉流拉格朗日觀測
外文關鍵詞: Anticyclonic Eddy, Eddy Radius, Eddy Kinetic Energy, Geostrophic Current, Kuroshio Current, Lagrangian Observation
相關次數: 點閱:103下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究旨在利用現地漂流浮球觀測結合衛星遙測資料,詳細解析西北太平洋渦漩–黑潮交互作用過程中的流場與動能變化。研究資料包括2023年6月於臺灣東部海域佈放自主研發之DrifterTek GPS漂流浮球,以及同期布放的Microstar GPS與SAFE漂流浮球所提供的拉格朗日流場觀測,輔以衛星高度計推算之地轉流場資料(ADT絕對動力地形與衍生流速)和ERA5再分析10公尺風場資料。分析方法上,首先根據浮球軌跡特徵將其移動歷程劃分為三個階段,逐一檢視各階段主要的驅動機制,包括地轉流、風應力及潮汐效應對浮球移動軌跡的影響。同時,採用AVISO提供的中尺度渦漩追蹤產品(META 3.2版本)計算渦漩的有效半徑和渦漩動能時序變化,並利用Okubo-Weiss參數與相對渦度場偵測渦漩邊界,以描述反氣旋渦漩(Anticyclonic Eddy,AE)從生成、發展到消散的完整生命史。研究結果顯示:浮球布放初期,AE維持完整且強度充沛,浮球軌跡主要沿AE東南緣向南移動,此時風場和地轉流向相反,但風場對浮球軌跡之影響甚微;當AE西移至黑潮區域時,AE西側環流與黑潮流向相同,使黑潮區域的局部流速提高,導致黑潮動能在浮球布放後3–5天有明顯增強。然而,在AE東側環流中移動的浮球速度減緩,推斷此時AE之地轉流減弱,浮球的移動方向受風場影響轉為東向,並產生近半日潮週期的繞圈運動。總體而言,本研究整合拉格朗日觀測與衛星高度計推算之地轉流場資料,剖析渦漩–黑潮交互作用下地轉流場與能量的變化,所得結論可為區域海洋動力過程的理解與預測提供科學資訊。

    This study uses GPS drifters and satellite remote sensing data to analyze the flow field and kinetic energy changes during the eddy-Kuroshio interaction in the Northwest Pacific Ocean (NWP). The results show that, at the beginning of the drifter deployment, the anti-cyclonic eddy (AE) remained strong, and the drifter track mainly moved southward along the southeastern edge of the AE. The wind field and the geostrophic flow were in opposite directions, but the effect of the wind field on the drifter track was very small; when the AE moved westward to the Kuroshio region, the circulation on the western side of the AE was in the same direction of the Kuroshio, which led to an increase of the local flow velocity of Kuroshio, and resulted in a significant enhancement of the Kuroshio kinetic energy in the first three to five days after the drifter was deployed. A significant increase in the kinetic energy of the Kuroshio current was found in the 3rd-5th days after the deployment of the float. However, the speed of the drifters on the east side of the AE was slowed down (the circulation in the AE were weakened), and the direction of the drifters was changed to an easterly direction due to the influence of the wind field.

    摘要 I Extended Abstract II 誌謝 VIII 目錄 X 表目錄 XII 圖目錄 XIII 第一章 結論 1 1.1 文獻回顧 1 1.2 研究目的 3 1.3 本文架構 3 第二章 研究方法 4 2.1 GPS浮球介紹 4 2.1.1 DrifterTek(流浪者)浮球介紹 4 2.1.2 Microstar GPS浮球介紹 6 2.1.3 SAFE浮球介紹 8 2.2 浮球速度相關性比較 10 2.3 AVISO衛星地轉流資料 12 2.4 風場資料 13 第三章 結果討論 14 3.1 浮球軌跡分析 14 3.2 科氏力、潮汐對浮球軌跡的影響 24 3.3 渦漩半徑與能量的變化 26 3.4 渦漩的生成與消散過程 33 3.5 黑潮與渦漩的交互作用 40 第四章 結論與建議 44 4.1 結論 44 4.2 建議 47 第五章 參考文獻 48 第六章 附錄 50 6.1 DrifterTek浮球使用說明 50 6.2 浮球量測溫度分析 53

    Chang, M.-H., Jan, S., Mensah, V., Andres, M., Rainville, L., Yang, Y. J., & Cheng, Y.-H. (2018). Zonal migration and transport variations of the Kuroshio east of Taiwan induced by eddy impingements. Deep Sea Research Part I: Oceanographic Research Papers, 131, 1-15.
    Chang, M. H., Cheng, Y. H., Yeh, Y. Y., Hsu, J. Y., Jan, S., Tseng, Y. H., Sui, C. H., Yang, Y. J., & Lin, P. H. (2023). Diurnal sea surface temperature warming along the Kuroshio off Taiwan under easterly wind conditions. Geophysical Research Letters, 50(2), e2022GL101412.
    Garcia, H., Weathers, K., Paver, C., Smolyar, I., Boyer, T., Locarnini, M., Zweng, M., Mishonov, A., Baranova, O., & Seidov, D. (2019). World ocean atlas 2018. Vol. 4: Dissolved inorganic nutrients (phosphate, nitrate and nitrate+ nitrite, silicate).
    Jan, S., Mensah, V., Andres, M., Chang, M. H., & Yang, Y. J. (2017). Eddy‐Kuroshio interactions: Local and remote effects. Journal of Geophysical Research: Oceans, 122(12), 9744-9764.
    Mensah, V., Jan, S., Andres, M., & Chang, M.-H. (2020). Response of the Kuroshio east of Taiwan to mesoscale eddies and upstream variations. Journal of Oceanography, 76, 271-288.
    Okubo, A. (1970). Horizontal dispersion of floatable particles in the vicinity of velocity singularities such as convergences. Deep Sea Research and Oceanographic Abstracts.
    Pegliasco, C., Delepoulle, A., Mason, E., Morrow, R., Faugère, Y., & Dibarboure, G. (2022). META3.1exp: A new global mesoscale eddy trajectory atlas derived from altimetry. Earth System Science Data, 14(3), 1087-1107.
    Petersen, M. R., Williams, S. J., Maltrud, M. E., Hecht, M. W., & Hamann, B. (2013). A three‐dimensional eddy census of a high‐resolution global ocean simulation. Journal of Geophysical Research: Oceans, 118(4), 1759-1774.
    Qiu, B., Chen, S., Klein, P., Sasaki, H., & Sasai, Y. (2014). Seasonal mesoscale and submesoscale eddy variability along the North Pacific Subtropical Countercurrent. Journal of Physical Oceanography, 44(12), 3079-3098.
    Schlax, M. G., & Chelton, D. B. (2016). The “growing method” of eddy identification and tracking in two and three dimensions. College of Earth, Ocean and Atmospheric Sciences, Oregon State University, Corvallis, Oregon, 8, 23.
    Sun, W., Liu, Y., Chen, G., Tan, W., Lin, X., Guan, Y., & Dong, C. (2021). Three-dimensional properties of mesoscale cyclonic warm-core and anticyclonic cold-core eddies in the South China Sea. Acta Oceanologica Sinica, 40, 17-29.
    Ting, H., Feng, Z., Di, T., & Jiaying, Z. (2020). Seasonal variations of mesoscale eddy in the Bay of Bengal and its adjacent regions. Journal of Marine Sciences, 38(3), 21.
    Torres, R., Waldman, R., Mak, J., & Séférian, R. (2023). Global estimation of the eddy kinetic energy dissipation from a diagnostic energy balance. Geophysical Research Letters, 50(20), e2023GL104688.
    Tsai, C. J., Andres, M., Jan, S., Mensah, V., Sanford, T. B., Lien, R. C., & Lee, C. M. (2015). Eddy‐Kuroshio interaction processes revealed by mooring observations off Taiwan and Luzon. Geophysical Research Letters, 42(19), 8098-8105.
    Weiss, J. (1991). The dynamics of enstrophy transfer in two-dimensional hydrodynamics. Physica D: Nonlinear Phenomena, 48(2-3), 273-294.
    Wu, C.-R., Wang, Y.-L., Lin, Y.-F., & Chao, S.-Y. (2017). Intrusion of the Kuroshio into the south and East China Seas. Scientific Reports, 7(1), 7895.
    Zhai, X., Johnson, H. L., & Marshall, D. P. (2010). Significant sink of ocean-eddy energy near western boundaries. Nature Geoscience, 3(9), 608-612.
    Zheng, Q., Tai, C.-K., Hu, J., Lin, H., Zhang, R.-H., Su, F.-C., & Yang, X. (2011). Satellite altimeter observations of nonlinear Rossby eddy–Kuroshio interaction at the Luzon Strait. Journal of Oceanography, 67, 365-376.
    鄭宇昕, & 何宗儒. (2013). 應用衛星測高偵測臺灣西南海域渦漩. 航測及遙測學刊, 17(4), 287-293.

    無法下載圖示 校內:2030-04-11公開
    校外:2030-04-11公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE