| 研究生: |
陳孟良 Chen, Meng-Liang |
|---|---|
| 論文名稱: |
銅對銅接合之低溫燒結奈米銀漿料的製備及其性質之研究 Preparation and Properties study of Low-Temperature Sintering Nanoscale Silver Pastes for Cu to Cu Bonding |
| 指導教授: |
許聯崇
Hsu, Lien-Chung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 83 |
| 中文關鍵詞: | 低溫燒結 、奈米銀漿料 、銅對銅接合 、銀前驅物添加 |
| 外文關鍵詞: | nano-silver paste, low-temperature sintering, Cu to Cu bonding, silver precursor additive |
| 相關次數: | 點閱:84 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究成功以有機酸保護的方式,製備出保護劑具有在180 ℃裂解脫附的特性,藉由控制保護劑比例、反應時間等參數,得到最佳粒徑為18.5 ± 4.1 nm的奈米銀粒子,以FTIR鑑定外為保護劑的官能基及鍵結的種類。並合成出於160 ℃裂解的銀前驅物2-乙基己酸銀,與奈米銀粒子及溶劑混練,即可得到低溫燒結的奈米銀漿料,透過調整2-乙基己酸銀在漿料中的添加量,並測量漿料的電性及接合強度來找尋最佳的比例。奈米銀粉與2-乙基己酸銀的比例為6 : 1時的比例,擁有最低的電阻率(12.7 ± 3.7 x10^-8 Ω*m),及最強的接合強度(27.7 ± 1.2 MPa)。低溫燒結奈米銀漿料在高溫儲藏測試1000小時後,電阻率並無顯著的上升。
Nanoization of silver nanopartilces significantly reduces the melting temperature of bulk silver. With the usage of silver nanoparticles and precursor additive, we have successfully synthesized low-temperature sintering silver paste which can be sintered at 200 ℃.We optimized proportion of silver nanoparticles and silver precursor to obtain the best performance. Specific amount of silver precursor leads to lower resistivity and higher bonding strength. After thermal compression process at 200 ℃ for 30 min, the paste produced high bonding strength up to 27 MPa. Without Silver precursor additive the bonding strength is only 17 MPa. There is obvious difference in the micro structure image showing addition of silver precursor has more connection between particles.(better sintering degree) Low electrical resistivity around 12.7 ± 3.7 x10-8 Ω*m were obtained.
[1] 賴炤銘 and 李錫隆, "奈米材料的特殊效應與應用," Chemistry (The Chinese Chem. Soc., Taipei), Vol. 61, pp. 585-597 (2003).
[2] W. H. Qi and M. P. Wang, "Size and shape dependent melting temperature of metallic nanoparticles," Materials Chemistry and Physics, Vol. 88, pp. 280-284 (2004).
[3] Q. Jiang, H. Shi, and M. Zhao, "Melting thermodynamics of organic nanocrystals," The Journal of Chemical Physics, Vol. 111, pp. 2176-2180 (1999).
[4] A. Goldstein, C. Echer, and A. Alivisatos, "Melting in semiconductor nanocrystals," Science, Vol. 256, pp. 1425-1427 (1992).
[5] P. Peng, A. Hu, A. P. Gerlich, G. Zou, L. Liu, and Y. N. Zhou, "Joining of Silver Nanomaterials at Low Temperatures: Processes, Properties, and Applications," ACS Applied Materials & Interfaces, Vol. 7, pp. 12597-12618 (2015).
[6] H. H. K. Xu, J. L. Moreau, L. Sun, and L. C. Chow, "Novel CaF2 Nanocomposite with High Strength and Fluoride Ion Release," Journal of Dental Research, Vol. 89, pp. 739-745 (2010).
[7] A. J. Hey and P. Walters, "The new quantum universe," Cambridge University Press, (2003).
[8] R. H. Ritchie, "Plasma Losses by Fast Electrons in Thin Films," Physical Review, Vol. 106, pp. 874-881 (1957).
[9] W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature, Vol. 424, pp. 824-830 (2003).
[10] 呂宗昕, "次微米電子陶瓷粉體之製備," 粉應用技術研討會論文集, (1993).
[11] 呂宗昕, "電子陶瓷之溶液法粉體製備技術," 化工技術, (1993).
[12] J. W. Mullin, "Crystallization," Butterworth-Heinemann, pp. 216-288 (2001).
[13] A. C. Zettlemiyer, "Nucleation," Marcel Dekker Inc, (1969).
[14] D.-H. Chen and X.-R. He, "Synthesis of nickel ferrite nanoparticles by sol-gel method," Materials Research Bulletin, Vol. 36, pp. 1369-1377 (2001).
[15] Y.-H. Deng, C.-C. Wang, J.-H. Hu, W.-L. Yang, and S.-K. Fu, "Investigation of formation of silica-coated magnetite nanoparticles via sol–gel approach," Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 262, pp. 87-93 (2005).
[16] K. Petcharoen and A. Sirivat, "Synthesis and characterization of magnetite nanoparticles via the chemical co-precipitation method," Materials Science and Engineering: B, Vol. 177, pp. 421-427 (2012).
[17] W. Jiang, X. Hua, Q. Han, X. Yang, L. Lu, and X. Wang, "Preparation of lamellar magnesium hydroxide nanoparticles via precipitation method," Powder Technology, Vol. 191, pp. 227-230 (2009).
[18] C. Lam, Y. F. Zhang, Y. H. Tang, C. S. Lee, I. Bello, and S. T. Lee, "Large-scale synthesis of ultrafine Si nanoparticles by ball milling," Journal of Crystal Growth, Vol. 220, pp. 466-470 (2000).
[19] F. Mafuné, J.-y. Kohno, Y. Takeda, T. Kondow, and H. Sawabe, "Structure and Stability of Silver Nanoparticles in Aqueous Solution Produced by Laser Ablation," The Journal of Physical Chemistry B, Vol. 104, pp. 8333-8337 (2000).
[20] M. T. Reetz and W. Helbig, "Size-Selective Synthesis of Nanostructured Transition Metal Clusters," Journal of the American Chemical Society, Vol. 116, pp. 7401-7402 (1994).
[21] D. V. Goia and E. Matijevic, "Preparation of monodispersed metal particles," New Journal of Chemistry, Vol. 22, pp. 1203-1215 (1998).
[22] M. Antelman, "The encyclopedia of chemical electrode potentials," Springer Science & Business Media, (2012).
[23] L. K. Kurihara, G. M. Chow, and P. E. Schoen, "Nanocrystalline metallic powders and films produced by the polyol method," Nanostructured Materials, Vol. 5, pp. 607-613 (1995).
[24] S. L.-C. Hsu and R.-T. Wu, "Synthesis of contamination-free silver nanoparticle suspensions for micro-interconnects," Materials Letters, Vol. 61, pp. 3719-3722 (2007).
[25] A. Slistan-Grijalva, R. Herrera-Urbina, J. F. Rivas-Silva, M. Ávalos-Borja, F. F. Castillón-Barraza, and A. Posada-Amarillas, "Synthesis of silver nanoparticles in a polyvinylpyrrolidone (PVP) paste, and their optical properties in a film and in ethylene glycol," Materials Research Bulletin, Vol. 43, pp. 90-96 (2008).
[26] H. Wang, X. Qiao, J. Chen, and S. Ding, "Preparation of silver nanoparticles by chemical reduction method," Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 256, pp. 111-115 (2005).
[27] M. Tsuji, P. Jiang, S. Hikino, S. Lim, R. Yano, S.-M. Jang, S.-H. Yoon, N. Ishigami, X. Tang, and K. S. N. Kamarudin, "Toward to branched platinum nanoparticles by polyol reduction: A role of poly(vinylpyrrolidone) molecules," Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 317, pp. 23-31 (2008).
[28] X. Wang, S. Zhang, and Z. Zhang, "Synthesis of hexagonal nanosized silver sulfide at room temperature," Materials Chemistry and Physics, Vol. 107, pp. 9-12 (2008).
[29] A. Wang, H. Yin, M. Ren, Y. Liu, and T. Jiang, "Synergistic effect of silver seeds and organic modifiers on the morphology evolution mechanism of silver nanoparticles," Applied Surface Science, Vol. 254, pp. 6527-6536 (2008).
[30] 王鉦源, "以化學還原法製備奈米級銀鈀微粉," 國立成功大學化學工程系研究所碩士論文, (2002).
[31] C. Jiang, D. J. Cardin, and S. C. Tsang, "Conductive Three-Dimensional Material Assembled from Silver Nanoparticles Using a Conjugated Dithiol Linker," Chemistry of Materials, Vol. 20, pp. 14-16 (2008).
[32] R.-T. Wu and S. L.-C. Hsu, "Preparation of highly concentrated and stable suspensions of silver nanoparticles by an organic base catalyzed reduction reaction," Materials Research Bulletin, Vol. 43, pp. 1276-1281 (2008).
[33] S. He, J. Yao, P. Jiang, D. Shi, H. Zhang, S. Xie, S. Pang, and H. Gao, "Formation of Silver Nanoparticles and Self-Assembled Two-Dimensional Ordered Superlattice," Langmuir, Vol. 17, pp. 1571-1575 (2001).
[34] Y. Tan, Y. Wang, L. Jiang, and D. Zhu, "Thiosalicylic Acid-Functionalized Silver Nanoparticles Synthesized in One-Phase System," Journal of Colloid and Interface Science, Vol. 249, pp. 336-345 (2002).
[35] K. J. Lee, Y.-I. Lee, I.-K. Shim, J. Joung, and Y. S. Oh, "Direct synthesis and bonding origins of monolayer-protected silver nanocrystals from silver nitrate through in situ ligand exchange," Journal of Colloid and Interface Science, Vol. 304, pp. 92-97 (2006).
[36] W. Wang, S. Efrima, and O. Regev, "Directing Oleate Stabilized Nanosized Silver Colloids into Organic Phases," Langmuir, Vol. 14, pp. 602-610 (1998).
[37] K. Suganuma, D. Wakuda, M. Hatamura, and M. Nogi, "Low-Temperature Wiring with Ag Nanoinks [Nanopackaging]," IEEE Nanotechnology Magazine, Vol. 4, pp. 20-23 (2010).
[38] X. Z. Lin, X. Teng, and H. Yang, "Direct Synthesis of Narrowly Dispersed Silver Nanoparticles Using a Single-Source Precursor," Langmuir, Vol. 19, pp. 10081-10085 (2003).
[39] N. Wu, L. Fu, M. Su, M. Aslam, K. C. Wong, and V. P. Dravid, "Interaction of Fatty Acid Monolayers with Cobalt Nanoparticles," Nano Letters, Vol. 4, pp. 383-386 (2004).
[40] M. Yamamoto, Y. Kashiwagi, and M. Nakamoto, "Size-Controlled Synthesis of Monodispersed Silver Nanoparticles Capped by Long-Chain Alkyl Carboxylates from Silver Carboxylate and Tertiary Amine," Langmuir, Vol. 22, pp. 8581-8586 (2006).
[41] M. Chen, L.-Y. Wang, J.-T. Han, J.-Y. Zhang, Z.-Y. Li, and D.-J. Qian, "Preparation and Study of Polyacryamide-Stabilized Silver Nanoparticles through a One-Pot Process," The Journal of Physical Chemistry B, Vol. 110, pp. 11224-11231 (2006).
[42] C. H. Ho, J. Tobis, C. Sprich, R. Thomann, and J. C. Tiller, "Nanoseparated polymeric networks with multiple antimicrobial properties," Advanced Materials, Vol. 16, pp. 957-961 (2004).
[43] P.-L. Kuo and W.-F. Chen, "Formation of Silver Nanoparticles under Structured Amino Groups in Pseudo-dendritic Poly(allylamine) Derivatives," The Journal of Physical Chemistry B, Vol. 107, pp. 11267-11272 (2003).
[44] D. V. Leff, L. Brandt, and J. R. Heath, "Synthesis and Characterization of Hydrophobic, Organically-Soluble Gold Nanocrystals Functionalized with Primary Amines," Langmuir, Vol. 12, pp. 4723-4730 (1996).
[45] N. R. Jana and X. Peng, "Single-Phase and Gram-Scale Routes toward Nearly Monodisperse Au and Other Noble Metal Nanocrystals," Journal of the American Chemical Society, Vol. 125, pp. 14280-14281 (2003).
[46] H. Hiramatsu and F. E. Osterloh, "A Simple Large-Scale Synthesis of Nearly Monodisperse Gold and Silver Nanoparticles with Adjustable Sizes and with Exchangeable Surfactants," Chemistry of Materials, Vol. 16, pp. 2509-2511 (2004).
[47] F. Chen, Z. Zhong, X.-J. Xu, and J. Luo, "Preparation of colloidal Pd nanoparticles by an ethanolamine-modified polyol process," Journal of Materials Science, Vol. 40, pp. 1517-1519 (2005).
[48] G. Kuczynski, "Self-Diffusion in Sintering of Metallic Particles," in Sintering Key Papers, ed: Springer, 1990, pp. 509-527.
[49] L. Chun-An, L. Pang, L. Hong-Ching, and W. Sea-Fue, "Characterization of the Low-Curing-Temperature Silver Paste with Silver 2-Ethylhexanoate Addition," Japanese Journal of Applied Physics, Vol. 46, pp. 251 (2007).
[50] B. E. Warren, "X-ray Diffraction," Courier Corporation, (1969).
[51] T. Wang, X. Chen, G.-Q. Lu, and G.-Y. Lei, "Low-Temperature Sintering with Nano-Silver Paste in Die-Attached Interconnection," Journal of Electronic Materials, Vol. 36, pp. 1333-1340 (2007).
[52] 陳彥廷, "奈米銀漿料的製備及性質研究," 成功大學材料科學及工程學系學位論文, 成功大學, (2016).
[53] T. V. Kumar, S. Prabhakar, and G. B. Raju, "Adsorption of oleic acid at sillimanite/water interface," Journal of Colloid and Interface Science, Vol. 247, pp. 275-281 (2002).
[54] K. Nakamoto, "Infrared and Raman spectra of inorganic and coordination compounds," Wiley Online Library, (1986).
[55] J. Mock, M. Barbic, D. Smith, D. Schultz, and S. Schultz, "Shape effects in plasmon resonance of individual colloidal silver nanoparticles," The Journal of Chemical Physics, Vol. 116, pp. 6755-6759 (2002).
校內:2022-09-01公開