| 研究生: |
莊媛茹 Chuang, Yuan-Yu |
|---|---|
| 論文名稱: |
人類TIAM2基因在發育時期血清素神經纖維的作用探討 The role of human TIAM2S gene in the developing of serotonergic fibers |
| 指導教授: |
朱俊憲
Chu, Chun-Hsien |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 分子醫學研究所 Institute of Molecular Medicine |
| 論文出版年: | 2019 |
| 畢業學年度: | 108 |
| 語文別: | 英文 |
| 論文頁數: | 55 |
| 中文關鍵詞: | 血清素纖維 、TIAM2 、早期生長發育 |
| 外文關鍵詞: | serotonergic fibers, TIAM2 gene, postnatal development |
| 相關次數: | 點閱:100 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
T細胞淋巴瘤侵襲和轉移2(TIAM2S)蛋白在健康的非腫瘤性腦組織中呈現高表達量。在先前的研究中,全基因轉錄組(whole-transcriptome)和基因功能富集分析(gene set enrichment analysis)結果顯示,TIAM2S-knockdown(TIAM2S-KD)與腦結構發育和分化、血清素相關信號傳導以及代表神經行為發展的疾病標誌物有密切相關。由於血清素(serotonin, 5-HT)對於5-羥色胺能神經元(serotonergic neurons)的末端發育至關重要。因此我們假設TIAM2S可以調節出生後,5-羥色胺能纖維(serotonergic fibers)的生長以及成年後的5-羥色胺的表現量。首先,透過重建3D圖像分析對血清素進行免疫熒光(IF)染色,於出生後第14天和第28天過表達人類TIAM2S蛋白(TIAM2S-TG小鼠)的WT和TG小鼠中測量八個的大腦區域(putamen, globus pallidus, primary somatosensory cortex layer IV, hippocampus, basolateral amygdala, medial prefrontal cortex, substantial nigra, and dorsal lateral geniculate nucleus)的血清素神經纖維的數量和總長度。實驗結果顯示,在出生後第14天,WT和TIAM2S-TG小鼠在大部分腦區中,小鼠的血清素纖維數量和總長度相似。有趣的是,TIAMS-TG小鼠在出生後第28天顯示出血清素纖維的數量和長度增加,特別是在basolateral amygdala、dorsal lateral geniculate、hippocampus及substantial nigra之大腦區域。此外,同時運用HPLC測量成年之WT和TIAM2S-TG小鼠hippocampus中的血清素濃度。實驗數據顯示,與WT小鼠(291.6 pg / mg)相比,TIAM2S-TG小鼠hippocampus的血清素濃度(353.9 pg / mg)約高21%。另外,TIAM2S-KD NT2/D1細胞中的血清素比shRNA_Leu對照細胞中的血清素低約50%(圖3G,P <0.01,t = 4.51,Student's t-test)。
儘管TIAM2S-TG小鼠在發育和生長過程中,大腦外觀正常,但經實驗結果進一步顯示,當TIAM2S過表達,其調節出生後血清素神經纖維(serotonergic fibers)的末端發育進而改變血清素分布走向,並提高了成年時期血清素的表現量。然而,人類TIAM2S對於血清素纖維的調控機制更值得進一步研究。簡言之,本研究顯示人類TIAM2S可作為新發現的調節子,增強出生後血清素神經纖維和血清素的增長。
The short form of the T-cell lymphoma invasion and metastasis 2 (TIAM2S) protein is abundant in healthy, non-neoplastic brain tissue. Previously, a whole-transcriptome and enrichment analysis with total RNA sequencing revealed that TIAM2S-knockdown (TIAM2S-KD) is strongly associated with the cellular processes related to the structural development and differentiation of the brain, serotonin-related signaling, and the markers of diseases representing neurobehavioral developmental disorders. Since the serotonin signal is critical for the terminal field development of serotonergic neurons, we determined whether TIAMS can regulate the postnatal stages of serotonergic fiber growth as well as the subsequent serotonin levels in adulthood. First, immunofluorescence (IF) staining for serotonin and an analysis of reconstructed 3D images was used to measure the number and total length of serotonergic fibers in eight region-matched brain areas (putamen, globus pallidus, primary somatosensory cortex layer IV, hippocampus, basolateral amygdala, medial prefrontal cortex, substantial nigra, and dorsal lateral geniculate nucleus) in WT and TG mice overexpressing human TIAM2S protein (TIAM2S-TG mice) at postnatal days 14 and 28. Our data showed that at postnatal day 14, the WT and TIAM2S-TG mice had a similar number and total length of serotonergic fibers among these brain regions. Interestingly, TIAMS-TG mice displayed increased number and length of serotonergic fibers at postnatal day 28, especially in the basolateral amygdala, dorsal lateral geniculate nucleus, hippocampus, and substantial nigra brain regions. Second,
we applied HPLC to carefully measure the serotonin levels in the hippocampus of WT and TIAM2S-TG mice at young adulthood. Our data revealed that the TIAM2S-TG mice had a ~21% higher serotonin concentrations in the hippocampus (353.9 pg/mg) compared with the WT mice (291.6 pg/mg). Furthermore, the serotonin level in the TIAM2S-KD NT2/D1 cells was ~50% lower than that in the shRNA_Leu control cells. Although the TIAM2S-TG mice had normal brain appearance during development and growth, our results further revealed that TIAM2S overexpression altered the serotonergic projection through modulation of the terminal field development of serotonergic neurons at postnatal stages in order to the elevation of serotonin level in adulthood. Nevertheless, determining the regulatory mechanisms related to the development of serotonergic fibers by human TIAM2S is of interest for further investigation. In conclusion, the present study demonstrates that human TIAM2S acts as a novel regulator to enhance postnatal growth of serotonergic fibers and serotonin levels.
Andrews, P. W. (2002). "From teratocarcinomas to embryonic stem cells." Philos Trans R Soc Lond B Biol Sci 357(1420): 405-417.
Bai, Y., X. Xiang, C. Liang and L. Shi (2015). "Regulating Rac in the nervous system: molecular function and disease implication of Rac GEFs and GAPs." Biomed Res Int 2015: 632450.
Charnay, Y. and L. Leger (2010). "Brain serotonergic circuitries." Dialogues Clin Neurosci 12(4): 471-487.
Charron, Y., J. Willert, B. Lipkowitz, B. Kusecek, B. G. Herrmann and H. Bauer (2019). "Two isoforms of the RAC-specific guanine nucleotide exchange factor TIAM2 act oppositely on transmission ratio distortion by the mouse t-haplotype." PLoS Genet 15(2): e1007964.
Chen, J. S., I. J. Su, Y. W. Leu, K. C. Young and H. S. Sun (2012). "Expression of T-cell lymphoma invasion and metastasis 2 (TIAM2) promotes proliferation and invasion of liver cancer." Int J Cancer 130(6): 1302-1313.
Daly, E. M., Q. Deeley, C. Ecker, M. Craig, B. Hallahan, C. Murphy, P. Johnston, D. Spain, N. Gillan, M. Brammer, V. Giampietro, M. Lamar, L. Page, F. Toal, A. Cleare, S. Surguladze and D. G. Murphy (2012). "Serotonin and the neural processing of facial emotions in adults with autism: an fMRI study using acute tryptophan depletion." Arch Gen Psychiatry 69(10): 1003-1013.
Ehler, E., F. van Leeuwen, J. G. Collard and P. C. Salinas (1997). "Expression of Tiam-1 in the developing brain suggests a role for the Tiam-1-Rac signaling pathway in cell migration and neurite outgrowth." Mol Cell Neurosci 9(1): 1-12.
Gu, S., M. Gao, Y. Yan, F. Wang, Y. Y. Tang and J. H. Huang (2018). "The Neural Mechanism Underlying Cognitive and Emotional Processes in Creativity." Front Psychol 9: 1924.
Hashemi, P., E. C. Dankoski, R. Lama, K. M. Wood, P. Takmakov and R. M. Wightman (2012). "Brain dopamine and serotonin differ in regulation and its consequences." Proc Natl Acad Sci U S A 109(29): 11510-11515.
Hornung, J. P. (2003). "The human raphe nuclei and the serotonergic system." J Chem Neuroanat 26(4): 331-343.
Jaiswal, P., K. P. Mohanakumar and U. Rajamma (2015). "Serotonin mediated immunoregulation and neural functions: Complicity in the aetiology of autism spectrum disorders." Neurosci Biobehav Rev 55: 413-431.
Jin, Y., S. E. Dougherty, K. Wood, L. Sun, R. H. Cudmore, A. Abdalla, G. Kannan, M. Pletnikov, P. Hashemi and D. J. Linden (2016). "Regrowth of Serotonin Axons in the Adult Mouse Brain Following Injury." Neuron 91(4): 748-762.
Kawauchi, T., K. Chihama, Y. Nabeshima and M. Hoshino (2003). "The in vivo roles of STEF/Tiam1, Rac1 and JNK in cortical neuronal migration." EMBO J 22(16): 4190-4201.
Kroon, T., E. van Hugte, L. van Linge, H. D. Mansvelder and R. M. Meredith (2019). "Early postnatal development of pyramidal neurons across layers of the mouse medial prefrontal cortex." Sci Rep 9(1): 5037.
Larson, M. H., L. A. Gilbert, X. Wang, W. A. Lim, J. S. Weissman and L. S. Qi (2013). "CRISPR interference (CRISPRi) for sequence-specific control of gene expression." Nat Protoc 8(11): 2180-2196.
Leeuwen, F. N., H. E. Kain, R. A. Kammen, F. Michiels, O. W. Kranenburg and J. G. Collard (1997). "The guanine nucleotide exchange factor Tiam1 affects neuronal morphology; opposing roles for the small GTPases Rac and Rho." J Cell Biol 139(3): 797-807.
Lidov, H. G. and M. E. Molliver (1982). "An immunohistochemical study of serotonin neuron development in the rat: ascending pathways and terminal fields." Brain Res Bull 8(4): 389-430.
Liu, Y., J. Zhao and W. Guo (2018). "Emotional Roles of Mono-Aminergic Neurotransmitters in Major Depressive Disorder and Anxiety Disorders." Front Psychol 9: 2201.
Maddaloni, G., A. Bertero, M. Pratelli, N. Barsotti, A. Boonstra, A. Giorgi, S. Migliarini and M. Pasqualetti (2017). "Development of Serotonergic Fibers in the Post-Natal Mouse Brain." Front Cell Neurosci 11: 202.
Matsuo, N., M. Hoshino, M. Yoshizawa and Y. Nabeshima (2002). "Characterization of STEF, a guanine nucleotide exchange factor for Rac1, required for neurite growth." J Biol Chem 277(4): 2860-2868.
Miller, M. B., Y. Yan, B. A. Eipper and R. E. Mains (2013). "Neuronal Rho GEFs in synaptic physiology and behavior." Neuroscientist 19(3): 255-273.
Nishimura, T., T. Yamaguchi, K. Kato, M. Yoshizawa, Y. Nabeshima, S. Ohno, M. Hoshino and K. Kaibuchi (2005). "PAR-6-PAR-3 mediates Cdc42-induced Rac activation through the Rac GEFs STEF/Tiam1." Nat Cell Biol 7(3): 270-277.
Pal, R. and G. Ravindran (2006). "Assessment of pluripotency and multilineage differentiation potential of NTERA-2 cells as a model for studying human embryonic stem cells." Cell Prolif 39(6): 585-598.
Paolicelli, R. C., G. Bolasco, F. Pagani, L. Maggi, M. Scianni, P. Panzanelli, M. Giustetto, T. A. Ferreira, E. Guiducci, L. Dumas, D. Ragozzino and C. T. Gross (2011). "Synaptic pruning by microglia is necessary for normal brain development." Science 333(6048): 1456-1458.
Pasten, C., J. Cerda, I. Jausoro, F. A. Court, A. Caceres and M. P. Marzolo (2015). "ApoER2 and Reelin are expressed in regenerating peripheral nerve and regulate Schwann cell migration by activating the Rac1 GEF protein, Tiam1." Mol Cell Neurosci 69: 1-11.
Stern, A. (2014). "CRISPR and RNA interference: similarities across immune systems: comment on "Diversity, evolution, and therapeutic applications of small RNAs in prokaryotic and eukaryotic immune systems" by Edwin L. Cooper and Nicola Overstreet." Phys Life Rev 11(1): 135-136; discussion 149-151.
Tork, I. (1990). "Anatomy of the serotonergic system." Ann N Y Acad Sci 600: 9-34; discussion 34-35.
van Minde, M. R. C., L. M. G. Blanchette, H. Raat, E. A. P. Steegers and M. L. A. Kroon (2019). "Reducing growth and developmental problems in children: Development of an innovative postnatal risk assessment." PLoS One 14(6): e0217261.
Walsh, K., J. Megyesi and R. Hammond (2005). "Human central nervous system tissue culture: a historical review and examination of recent advances." Neurobiol Dis 18(1): 2-18.
Wilson, M. A. and M. E. Molliver (1991). "The organization of serotonergic projections to cerebral cortex in primates: regional distribution of axon terminals." Neuroscience 44(3): 537-553.
Wilton, D. K., L. Dissing-Olesen and B. Stevens (2019). "Neuron-Glia Signaling in Synapse Elimination." Annu Rev Neurosci 42: 107-127.
Yoo, S., Y. Kim, H. Lee, S. Park and S. Park (2012). "A gene trap knockout of the Tiam-1 protein results in malformation of the early embryonic brain." Mol Cells 34(1): 103-108.
Zaldua, N., M. Gastineau, M. Hoshino, F. Lezoualc'h and J. L. Zugaza (2007). "Epac signaling pathway involves STEF, a guanine nucleotide exchange factor for Rac, to regulate APP processing." FEBS Lett 581(30): 5814-5818.
Zoephel, J. and L. Randau (2013). "RNA-Seq analyses reveal CRISPR RNA processing and regulation patterns." Biochem Soc Trans 41(6): 1459-1463.