簡易檢索 / 詳目顯示

研究生: 鄭添鴻
Cheng, Tien-Hung
論文名稱: 氧化銦鋁鋅半導體於光電元件之應用
Application of Indium Aluminum Zinc Oxide Semiconductor in Photoelectric Devices
指導教授: 張守進
Chang, Shoou-Jinn
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 108
中文關鍵詞: 銦鋁鋅氧化物磁控濺鍍薄膜電晶體原子層沉積法紫外光檢測器光電晶體
外文關鍵詞: Indium Aluminum Zinc Oxide, Sputter, Thin Film Transistor, Atomic Layer Deposition, UV sensor, Phototransistor
相關次數: 點閱:74下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文分成三個部分,第一個部分是利用共濺鍍系統成長氧化鋅與氧化錫為主動層之薄膜電晶體。透過調整氧化鋅以及氧化錫的濺鍍功率能得到不同能隙的氧化鋅銦薄膜,並將其應用於紫外光光電晶體上。第二部分是針對銦鋁鋅氧化物的底閘極式薄膜電晶體的製備以及銦鋁鋅氧化物薄膜的分析。我們在玻璃基板上利用熱蒸鍍法沉積鋁作為下電極,而介電層則是透過化學氣相沉積法沉積200奈米的二氧化矽,接著利用磁控濺鍍調變濺鍍時通入不同比例的氧流量,我們可以沉積出不同氧流比的銦鋁鋅氧化物薄膜作為主動層,最後在利用熱蒸鍍法鍍鋁作為汲極以及源極。透過通入適當的氧流比輔助濺鍍,可以有效減少主動層內的氧空缺並且有效的改善元件的電特性,包含載子遷移率、開關電流比、臨界電壓以及次臨界擺幅都能有顯著的改善。
    第三部分,我們使用原子層沉積法分別沉積高品質的氧化鋁以及二氧化鉿做為閘極介電層來製作薄膜電晶體,元件的主動層依然是使用銦鋁鋅氧化物半導體薄膜。在使用氧化鋁作為介電層時,我們將製備好的元件拿來跟原本的二氧化矽介電層比較,雖然場效遷移率並沒有太大的變化,但是開關電流比因為關電流有效的下降,而產生顯著的增加,次臨界擺幅也有明顯變小,表示介面跟主動層之間的介面缺陷可以透過原子層沉積法沉積的氧化鋁改善。透過來回施壓閘極電壓可以發現,使用氧化鋁作為介電層會比二氧化矽作為元件介電層有更小的臨界電壓偏移,這也佐證了介面缺陷的確能有效減少。接著將這兩種不同絕緣層的元件拿來做為光電晶體使用,分別照射400奈米到250奈米的光後,我們計算照光後元件的響應、拒斥比,以及外部量子效率,發現透過原子層沉積法製作出來的光電晶體比起傳統的化學沉積法表現更好,具有應用在光電元件的潛力。另外,在製作以二氧化蛤為介電層的元件時,我們將做好的元件在大氣下退火一個小時,發現比起沒有退火的元件,在200度下退火的電晶體有比較好的電特性,次臨界擺幅從1.37V/dec下降到0.21V/dec,開關電流比提升了一萬倍,而照光後的光響應、拒斥比都獲得大幅的改善。
    透過調變適當的氧流比並且搭配合適的絕緣層還有溫度條件,我們發現銦鋁鋅氧化物薄膜是具有相當的潛力,可以有機會在未來被使用在未來的光電產業裡面。

    There are three parts of this Dissertation. The first part is depositing zinc oxide (ZnO) and tin oxide (SnO2) as an active layer in a thin-film transistor (TFT) by the co-sputtered system. By optimizing the deposition power of ZnO and SnO2 can fabricate zinc tin oxide (ZTO) thin film with different bandgaps and apply to UV sensing applications. The second part is fabricating indium aluminum zinc oxide (IAZO) bottom gate TFT and analyzing IAZO thin film. The Al bottom gate is deposited on the cleaned quartz substrate through thermal evaporation. The dielectric is 200 nm SiO2 which is prepared by plasma enhanced chemical vapor deposition (PECVD). The IAZO thin film as an active layer is prepared by RF magnetic sputtering system and the oxygen/argon ratio is optimized during the process. Finally, the Al source and drain contact are finished through thermal evaporation. The electrical properties including the field mobility, Ion/Ioff, threshold voltage, and subthreshold swing are improved by optimizing an appropriate O2/Ar ratio. That is owing to the reduction of the oxygen vacancies between the interface of the active layer and dielectric layer.
    The third part is applying atomic layer deposition to deposit a high-quality dielectric layer including Al2O3 and HfO2 as a dielectric layer in TFT. The active layer still uses IAZO thin film with a 2% oxygen ratio. We compare the device with Al2O3 and SiO2 dielectric layers. Although the field mobility doesn’t receive significant changing, the Ion/Ioff increases owing to the lower off current. The subthreshold swing also decreases which indicates the interface state between the active layer and dielectric layer can be modified by depositing the Al2O3 dielectric layer through ALD. The transfer curve when gate voltage sweeping forward and backward under constant drain voltage reveals that the device with Al2O3 dielectric layer has a lower threshold voltage shift. It can prove the interface state is decreasing. Then these two devices are measured under the photo illumination. The wavelength varies from 400 nm to 250 nm. The photoresponse, response time, rejection ratio and quantum efficiency are calculated and compared to each other. The device with ALD dielectric layer has a higher photoresponse than traditional PECVD. Furthermore, the device with the HfO2 dielectric layer through ALD is annealed under 200oC for an hour. The device has a better electrical performance by post-annealing treatment. SS. decreases from 1.37 V/dec to 0.21 V/dec and Ion/Ioff increase from 104 to 108. The photoresponse such as responsivity and rejection ratio also has significant improvement.
    Optimizing a moderate oxygen flow ratio and choosing an appropriate dielectric layer and annealing condition. We find that IAZO TFT has a high potential to apply in the photoelectric industry.

    Contents Abstract (in Chinese) I Abstract (in English) III Acknowledgements VI Chapter 1 Introduction 1 1–1 Background and motivation 1 1–2 Overview of amorphous metal oxide semiconductor 3 1–3 ZnO-based transparent conductive oxide (TCO) thin films 5 1–4 The application of ZnO based semiconductor material 7 1–4–1 Thin film transistor 7 1–4–2 UV phototransistor 9 1–5 The background of high k material 11 1–6 Organization of this dissertation 12 Reference 13 Chapter 2 Experimental Procedure and Relative Parameters 22 2–1 Fabrication system 22 2–1–1 RF Sputter 22 2–1–2 Plasma Enhancement Chemical Vapor Deposition 25 2–1–3 Atomic Layer Deposition 27 2–2 The Measurement Equipment 30 2–2–1 XPS 30 2–2–2 XRD 31 2–2–3 AFM 34 2–3 The Important parameter 35 2–3–1 Field-Effect Mobility 35 2–3–2 Threshold Voltage (Vt) 36 2–3–3 On/off current Ratio (Ion/Ioff) 39 2–3–4 Subthreshold Swing (SS) 39 2–3–5 Photoresponse 40 Reference 41 Chapter 3 Investigation of ZTO Phototransistors 42 3–1 Motivation 42 3–2 Experimental Procedure 43 3–3 Results and Discussion 45 3–4 Summary 52 Reference 53 Chapter 4 Investigation of IAZO Thin Film Transistors 56 4–1 Motivation 56 4–2 Experimental Procedure 57 4–3 Results and Discussion 59 4–4 Summary 69 Reference 70 Chapter 5 Investigation of IAZO TFT with Al2O3 dielectric layer by ALD 75 5–1 Motivation 75 5–2 Experimental Procedure 76 5–3 Results and Discussion 78 5–4 Summary 87 Reference 88 Chapter 6 Investigation of IAZO TFT with HfO2 dielectric layer treated by the post-annealing method 94 6–1 Motivation 94 6–2 Experimental Procedure 95 6–3 Results and Discussion 97 6–4 Summary 106 Reference 107 Chapter 7 Conclusions and Future Work 112 7–1 Conclusions 113 7–2 Future Work 114

    chap1

    [1] Spear, W. E., and P. G. Le Comber. "Substitutional doping of amorphous silicon." Solid State Commun., vol. 88, no. 11-12, pp. 1015-1018, 1993
    [2] H. Hosono, “Ionic amorphous oxide semiconductors: Material design, carrier transport, and device application” J. Non-Cryst., vol. 352, pp. 851-858, 2006
    [3] K. Nomura, A. Takag, T. Kamiya, H. Ohta, M. Hirano, and H. Hosono, “Amorphous Oxide Semiconductors for High-Performance Flexible Thin-Film Transistors,” Jpn. J. Appl. Phys., vol. 45, pp. 4303–4308, 2006
    [4] L. Zhang, H. Zhang, Y. Bai, J. W. Ma, J. Cao, X. Y. Jiang, Z. L. Zhang, “Enhanced performances of ZnO-TFT by improving surface properties of channel layer,” Solid State Commun., vol. 146, pp. 387–390, 2008
    [5] K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, “Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors,” Nature, vol. 432, pp. 489–491, Nov. 2004
    [6] K. Nomura, H. Ohta, K. Ueda, T. Kamiya, M. Hirano, and H. Hosono, “Thin-film transistor fabricated in single-crystalline transparent oxide semiconductor,” Science, vol. 300, pp. 1269-1271, 2003
    [7] N. C. Su, S. J. Wang, and A. Chin, “High-Performance InGaZnO Thin-Film Transistors Using HfLaO Gate Dielectric,” IEEE Elec. Dev. Lett., vol. 30, No. 12, 2009
    [8] W. C. Shin, H. Moon, S. Yoo, Y. X. Li, and B. J. Cho, “Low-voltage high-performance pentacene thin-film transistors with ultrathin PVP/high-κ HfLaO hybrid gate dielectric,” IEEE Elec. Dev. Lett., vol. 30, pp. 1308-1310, 2010
    [9] Varghese, O. K., Paulose, M., and Grimes, C. A. “Long vertically aligned titania nanotubes on transparent conducting oxide for highly efficient solar cells. “Nat. Nanotechnol., vol. 4, no. (9), 592, 2009
    [10] Patel, M., Kim, H. S., Kim, J., Yun, J. H., Kim, S. J., Choi, E. H., and Park, H. H. “Excitonic metal oxide heterojunction (NiO/ZnO) solar cells for all-transparent module integration.” Sol. Energy Mater. Sol. Cells, vol. 170, pp. 246-253, 2017
    [11] Minami, T., Nishi, Y., & Miyata, T. “Cu2O-based solar cells using oxide semiconductors.” J. Semicond., vol. 37, no. (1), 014002, 2016
    [12] Wu, W. J., Chen, J. W., Wang, J. S., Zhou, L., Tao, H., Zou, J. H., and Chan, M. “High-Resolution Flexible AMOLED Display Integrating Gate Driver by Metal–Oxide TFTs.” IEEE Electron Device Lett., vol. 39, no. (11), pp. 1660-1663, 2018
    [13] B.Y. Oh, M. C. Jeong, D. S. Kim, W. Lee, J. M. Myoung, “Post-annealing of Al-doped ZnO films in a hydrogen atmosphere,” J. Cryst. Growth, vol.281, pp. 475–480, 2005
    [14] K. Matsubara, P. Fons, K. Iwata, A. Yamada, K. Sakurai, H. Tampo, and S. Niki, “ZnO transparent conducting films deposited by pulsed laser deposition for solar cell applications,” Thin Solid Films, vol. 431-432, pp. 369-372, 2003
    [15] M.F.A.M. van Hest, M.S. Dabney, J.D. Perkins, D.S. Ginley, and M.P. Taylor, “Titanium-doped indium oxide: A high-mobility transparent conductor,” Appl. Phys. Lett., vol. 87, pp. 032111, 2005
    [16] H. M. Ali, H. A. Mohamed, and S. H. Mohamed, Eur, “Enhancement of the optical and electrical properties of ITO thin films deposited by electron beam evaporation technique,” J. Appl. Phys, vol. 31, pp. 87-93, 2005
    [17] H. Yue1, A. Wu, J. Hu, X. Zhang, T. Li, “Relationship between structure and functional properties of the ZnO: Al thin films,” Mater. Sci. Forum, vol. 675-677, pp. 1275-1278, 2011
    [18] B. Y. Oh, M. C. Jeong, W. Lee, and J. M. Myoung, ‘‘Properties of Transparent Conductive ZnO Al Films Prepared by Co-Sputtering,’’ J. Cryst. Growth, vol. 274, pp. 453–457, 2005
    [19] Mullapudi, G. S. R., Velazquez-Nevarez, G. A., Avila-Avendano, C., Torres-Ochoa, J. A., Quevedo-López, M. A.,and Ramírez Bon, R. “Low-Temperature Deposition of Inorganic-Organic HfO2-PMMA Hybrid Gate Dielectric Layers for High Mobility ZnO Thin-film Transistors.” ACS Appl. Electron. Mater, 2019
    [20] A. L. Dawar and J. C. Joshi, “Semiconducting transparent thin films,” J. Mater. Sci., vol. 19, pp. 1–23, 1984
    [21] P. K. Weifer, H. Borkan, G. Sadasiv, L. Meray-Horvath, and F. V. Shallcross, “Integrated Circuits Incorporating Thin-Film Active and Passive Elements,” Proc. IEEE., vol. 51, pp. 851, 1964
    [22] Kim, J., Bang, J., Nakamura, N., and Hosono, H.“Ultra-wide bandgap amorphous oxide semiconductors for NBIS-free thin-film transistors.” APL Materials, vol. 7, no. (2), 022501, 2019
    [23] Li, J. T., Tsai, H. L., Lai, W. Y., Hwang, W. S., Chen, I. G., and Chen, J. S. “Modification of FN tunneling provoking gate-leakage current in ZTO (zinc-tin oxide) TFT by regulating the ZTO/SiO2 area ratio.” Appl. Phys. Lett., 112(18), 183502, 2018
    [24] Woo, K., Lee, S. H., Lee, S., Bak, S. Y., Kim, Y. J., and Yi, M. “Effect of interfacial InZnO conducting layer on electrical performance and bias stress stability of InAlZnO thin-film transistors.” Microelectron Eng, 215, 111006, 2019
    [25] Li, X., Zhang, H., Lu, X., Fang, Z., Yao, R., Wang, Y., and Peng, J.”Effect of oxygen pressure on GZO film as active layer of the TFT fabricated at room temperature.” Superlattices Microstruct., 137, 106317, 2020
    [26] Matsuo, D., Takuya, I., Kishida, S., Setogucti, Y., Andoh, Y., Miyanaga, R., and Uraoka, Y. “High reliability InGaZnO TFT by inductively coupled plasma sputtering system.” IEEE .IEDM, pp. 43-46., 2019
    [27] Y. K. Moon, D. Y. Moon, S. Lee, S. H. Lee, and J. W. Park, and C. O. Jeong, “Effects of oxygen contents in the active channel layer on electrical characteristics of ZnO-based thin-film transistors,” J. Vac. Sci. Technol. B., vol. 26, pp. 1472-1476, 2008
    [28] C. Li, Y. Li, Y. Wu, B. S. Ong, and R. O. Loutfy,“ZnO field-effect transistors prepared by aqueous solution-growth ZnO crystal thin film,” J. Appl. Phys., vol. 102, no. 076101, 2007
    [29] C. S. Yang, L. L. Smith, C. B. Arthur, and G. N. Parsons, “Stability of low-temperature amorphous silicon thin-film transistors formed on glass and transparent plastic substrates,” J. Vac. Sci. Technol, vol. 18, pp. 683–689, 2000
    [30] R. Navamathavan, J. H. Lim, D. K. Hwang, B. H. Kim, J. Y. Oh, J. H. Yang, H. S. Kim and S. J. Park, “Thin-Film Transistors Based on ZnO Fabricated by Using Radio-Frequency Magnetron Sputtering,” J. Korean Phys. Soc., vol. 48, pp. 271-274, 2006

    [31] E. Fortunato, A. Pimentel, L. Pereira, A. Gonc_alves, G. Lavareda, H. Aguas, I. Ferreira, C.N. Carvalho, R. Martins, “High field-effect mobility zinc oxide thin-film transistors produced at room temperature,” J. Non-Cryst., vol. 338–340, pp. 806–809, 2004
    [32] H. H. Zhang, C. Y. Ma, and Q. Y. Zhang, “Scaling behavior and structure transition of ZrO2 films deposited by RF magnetron sputtering,” Vacuum, vol. 83, pp. 1311-1316, 2009
    [33] Vidor, F. F., Meyers, T., and Hilleringmann, U.“Flexible electronics: integration processes for organic and inorganic semiconductor-based thin-film transistors.” Electronics, vol. 4, no. (3), pp. 480-506, 2015
    [34] Campbell J C 1985 Semiconductors and Semimetal vol. 22D, ed W T Tsang (New York: Academic) Star, Y. Lu, K. Bradley, and G. Gruner, “Nanotube optoelectronic memory devices,” Nano Lett., vol. 4, pp.1587, 2004
    [35] G. Chaji, A. Nathan, and Q. Pankhurst, “Merged phototransistor pixel with enhanced near infrared response and flicker noise reduction for biomolecular imaging,” Appl. Phys. Lett., vol. 93, pp. 203504, 2008
    [36] N. M. Johnson, and A. Chiang, “Highly photosensitive transistors in single-crystal silicon thin films on fused silica,” Appl. Phys. Lett., vol. 45, pp. 1102, 1984
    [37] Y. Kaneko, N. Koike, K. Tsutsui, and T. Tsukada, “Amorphous silicon phototransistors,” Appl. Phys. Lett., vol. 56 pp. 650, 1990
    [38] C. S. Choi, H. S. Kang, W. Y. Choi, H. J. Kim, W. J. Choi, D. J. Kim, K. Jang, T. Y. Zhai, X. S. Fang, M. Y. Liao, X. J. Xu, H. B. Zeng, B. Yoshio, and D. Golberg, “A comprehensive review of one-dimensional metal-oxide nanostructure photodetectors,” Sensors, vol. 9, pp. 6504–6529, 2009
    [39] C. S. Choi, H. S. Kang, W. Y. Choi, H. J. Kim, W. J. Choi, D. J. Kim, K. Jang, T. Y. Zhai, X. S. Fang, M. Y. Liao, X. J. Xu, H. B. Zeng, B. Yoshio, and D. Golberg, “A comprehensive review of one-dimensional metal-oxide nanostructure photodetectors,” Sensors, vol. 9, pp. 6504–6529, 2009
    [40] Sun, Z., Li, J., and Yan, F. “Highly sensitive organic near-infrared phototransistors based on poly (3-hexylthiophene) and PbS quantum dots.” Journal of Materials Chemistry, 22(40), 21673-21678, 2012
    [41] G. D. Wilk, R. M. Wallace, and J. M. Anthony, “High-kappa gate dielectrics: Current status and materials properties considerations,” J. Appl. Phys., vol. 89, pp. 5243-7275, 2001
    [42] S. H. Kim, S. E. Kim, J. H. Park, S. H. Kim and M. S. Kim, ”A complementary method to determine the effective flow resistivity of flat ground states,” J. Korean Phys. Soc., vol. 43, pp. 868-874, 2003
    [43] L. Kang, B. H. Lee, W. J. Qi, Y. Jeon, R. Nieh, S. Gopalan, K. Onishi, and J. C. Lee, “Electrical characteristics of highly reliable ultrathin hafnium oxide gate dielectric,” IEEE Elec. Dev. Lett., vol. 21, pp. 181-183, 2000
    [44] B. H. Lee, L. Kang, R. Nieh, and J. C. Lee, “Thermal stability and electrical characteristics of ultrathin hafnium oxide gate dielectric reoxidized with rapid thermal annealing,” Appl. Phys. Lett., vol. 76, pp. 1926-1928, 2000
    [45] M. A. Quevedo-Lopez, M. El-Bouanani, B. E. Gnade, R. M. Wallace, M. R. Visokay, M. Douglas, M. J. Bevan, and L. Colombo, “Interdiffusion studies for HfSixOy and ZrSixOy on Si,” J. Appl. Phys., vol. 92, pp. 3540-3550, 2002
    [46] K. S. Hwang, Y. S. Jeon, S. B. Kim, C. K. Kim and J. S. Oh, “Ca-Doped ZrO2 Thin Films Deposited by Using the Spin-Coating Pyrolysis Process with a Metal Naphthenate Precursor,” J. Korean Phys Soc., vol. 43, pp. 754, 2003
    [47] H. Y. Yu, N. Wu, M. F. Li, C. Zhu, B. J. Cho, D. L. Kwong, C. H. Tung, J. S. Pan, J. W. Chai, W. D. Wang, D. Z. Chi, C. H. Ang, J. Z. Zheng, and S. Ramanathan, “Thermal stability of HfO2 Al2O3 on Si,” Appl.Phys. Lett., vol. 81, pp. 3618-3620, 2002.
    [48] H. H. Zhang, C. Y. Ma, and Q. Y. Zhang, “Scaling behavior and structure transition of ZrO2 films deposited by RF magnetron sputtering,” Vacuum, vol. 83, pp. 1311-1316, 2009

    chap2

    [1] J. L. Vossen and W. Kern, Thin Flim Processes, Academic Press, New York, pp. 131, 1978
    [2] C. Y. Chang and S.M. Sze, “ULSI Technology”, McGraw-Hill, New York, pp. 380, 1996
    [3] S. I. Shah, Handbook of Thin Film Process Technology, Institute of Physics Pub, Bristol, UK, pp. A3.0:1 , 1995
    [4] Long, J., Yin, Y., Sian, S. Y. R., Ren, Z., Wang, J., Vayalakkara, P., and Aberle, A. G. “Doped microcrystalline silicon layers for solar cells by
    [5] 13.56 MHz plasma-enhanced chemical vapour deposition.” Energy Procedia, vol. 15, pp. 240-247, 2012
    [6] Kim, S. Y., Cha, B. J., Saqlain, S., Seo, H. O.,and Kim, Y. D.”Atomic Layer Deposition for Preparation of Highly Efficient Catalysts for Dry Reforming of Methane.” Catalysts, vol. 9, no. (3), 266, 2019
    [7] Paterson, A. F., and Anthopoulos, T. D. “Enabling thin-film transistor technologies and the device metrics that matter.” Nat. Commun., vol. 9, no. (1), 5264, 2018
    [8] Powell, M. J. “The physics of amorphous-silicon thin-film transistors.” IEEE Trans. Electron Devices, vol. 36, no. (12), pp. 2753-2763, 1989

    chap3

    [1] Wang, J. X., Sun, X. W., Wei, A., Lei, Y., Cai, X. P., Li, C. M., and Dong, Z. L..“Zinc oxide nanocomb biosensor for glucose detection. “Appl. Phys. Lett., vol. 88, no. (23), 233106, 2006
    [2] Park, N. G., Kang, M. G., Ryu, K. S., Kim, K. M., and Chang, S. H.. “Photovoltaic characteristics of dye-sensitized surface-modified nanocrystalline SnO2 solar cells.” J. Photochem. Photobiol., vol. 161, no. (2-3), pp.105-110, 2004
    [3] Zhou, Q., Yang, L., Wang, G., and Yang, Y. “Acetylcholinesterase biosensor based on SnO2 nanoparticles–carboxylic graphene–nafion modified electrode for detection of pesticides. “ Biosensors, vol. 49, pp. 25-31, 2013
    [4] Hu, L., Yan, J., Liao, M., Wu, L., and Fang, X. “Ultrahigh external quantum efficiency from thin SnO2 nanowire ultraviolet photodetectors.” small, vol. 7, no. (8), pp.1012-1017, 2011
    [5] Weng, W. Y., Chang, S. J., Hsu, C. L., and Hsueh, T. J. “A ZnO-nanowire phototransistor prepared on glass substrates.” ACS Appl. Mater. Interfaces, vol. 3, no. (2), pp. 162-166, 2011
    [6] Zhang, F., Wang, X., Ai, S., Sun, Z., Wan, Q., Zhu, Z., and Yamamoto, K. “Immobilization of uricase on ZnO nanorods for a reagentless uric acid biosensor.” Anal. Chim, vol. 519, no. (2), pp. 155-160, 2004
    [7] Zhang, L., Guo, Q., Tan, Q., Fan, Z.,and Xiong, J. “High Performance Amorphous IGZO Thin-Film Transistor Based on Alumina Ceramic.” IEEE Access, vol.7, pp. 184312-184319, 2019
    [8] Kim, N. J., Shin, N., and Hwang, C. S. “Optical and electrical characteristics of Ga-Zn-O thin films prepared by RF magnetron co-sputtering system.” Superlattices Microstruct, vol. 101, pp. 68-75, 2017
    [9] Carcia, P. F., McLean, R. S., Reilly, M. H.,and Nunes Jr, G. “Transparent ZnO thin-film transistor fabricated by rf magnetron sputtering.” Appl. Phys. Lett., vol. 82, no. (7), pp. 1117-1119, 2003
    [10] Presley, R. E., Munsee, C. L., Park, C. H., Hong, D., Wager, J. F., and Keszler, D. A. Tin oxide transparent thin-film transistors.” J. Phys. D, vol. 37, no. (20), 2810, 2004
    [11] Fortunato, E. M., Barquinha, P. M., Pimentel, A. C. M. B. G., Gonçalves, A. M., Marques, A. J., Pereira, L. M., and Martins, R. F. “Fully transparent ZnO thin‐film transistor produced at room temperature.” Adv. Mater., vol. 17, no. (5), pp. 590-594, 2005
    [12] Hosono, H., Kikuchi, N., Ueda, N., and Kawazoe, H. “Working hypothesis to explore novel wide band gap electrically conducting amorphous oxides and examples.” J. Non-Cryst. Solids, 198, pp. 165-169, 1996
    [13] Hosono, H., Yasukawa, M., and Kawazoe, H. “Novel oxide amorphous semiconductors: Transparent conducting amorphous oxides.” J. Non-Cryst. Solids, 203, pp. 334-344, 1996
    [14] Fortunato, E. M., Barquinha, P. M., Pimentel, A. C., Gonçalves, A. M., Marques, A. J., Martins, R. F., and Pereira, L. M.”Wide-bandgap high-mobility ZnO thin-film transistors produced at room temperature.” Appl. Phys. Lett., vol. 85, no. (13), pp. 2541-2543, 2004
    [15] Masuda, S., Kitamura, K., Okumura, Y., Miyatake, S., Tabata, H.,and Kawai, T. “Transparent thin film transistors using ZnO as an active channel layer and their electrical properties.” J. Appl. Phys., vol. 93, no. (3), pp. 1624-1630, 2003
    [16] Li, J. Y., Chang, S. P., Hsu, M. H., and Chang, S. J.”Photo-Electrical Properties of MgZnO Thin-Film Transistors With High-k Dielectrics.” IEEE PHOTONIC TECH L, vol. 30, no. (1), pp. 59-62, 2017
    [17] Yang, W., Zhang, B., Zhang, Q., Wang, L., Song, B., Ding, Y., and Wong, C. P.” Adjusting the band structure and defects of ZnO quantum dots via tin doping.” RSC Adv, vol. 7, no. (19), pp. 11345-11354, 2017
    [18] Kuo, P. J., Chang, S. P., and Chang, S. J. “Investigation of zinc-tin-oxide thin-film transistors with varying SnO2 contents.” ELECTRON MATER LETT, vol. 10, no. (1), pp. 89-94, 2014
    [19] Huang, C. X., Li, J., Fu, Y. Z., Zhang, J. H., Jiang, X. Y., and Zhang, Z. L. “Suppression in the negative bias illumination instability of ZnSnO thin-film transistors using hafnium doping by dual-target magnetron cosputtering system.” IEEE Trans. Electron Devices, 2016

    chap4

    [1] Carcia, P. F., McLean, R. S., Reilly, M. H.,and Nunes Jr, G. “Transparent ZnO thin-film transistor fabricated by rf magnetron sputtering.” Appl. Phys. Lett., vol. 82, no. (7), pp. 1117-1119, 2003
    [2] T. Hirao, M. Furuta, H. Furuta, T. Matsuda, T. Hiramatsu, H. Hokari, and M. Kakegawa, “Novel top‐gate zinc oxide thin‐film transistors (ZnO TFTs) for AMLCDs.” J. Soc. Inf. Disp. vol. 15, no. (1), pp. 17-22, 2007
    [3] S. Masuda, K. Kitamura, Y. Okumura, S. Miyatake, H. Tabata, and T. Kawai, “Transparent thin film transistors using ZnO as an active channel layer and their electrical properties.” J. Appl. Phys. vol. 93, no. (3), pp. 1624-1630, 2003
    [4] J. D. Albrecht, P. P. Ruden, S. Limpijumnong, W. R. L. Lambrecht, and K. F. Brennan.”High field electron transport properties of bulk ZnO.” J. Appl. Phys. vol. 86, no. (12), 6864-6867, 1999
    [5] E. M. Fortunato, P. M. Barquinha, A. C. Pimentel, A. M. Gonçalves, A. J. Marques, R. F. Martins, L. M. Pereira, "Wide-bandgap high-mobility ZnO thin-film transistors produced at room temperature", Appl. Phys. Lett., vol. 85, no. 13, pp. 2541-2543, 2004
    [6] K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, H. Hosono, “Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors.” Nature. vol. 432, pp. 488-492, 2004
    [7] N. L. Dehuff, E. S. Kettenring, D. Hong, H. Q. Chiang, J. F. Wager, R. L. Hoffman, and D. A. Keszler, “Transparent thin-film transistors with zinc indium oxide channel layer.” J. Appl. Phys. vol. 97, no. (6), 064505, 2005
    [8] W. Lim, Y. L. Wang, F. Ren, D. P. Norton, I. I. Kravchenko, J. M. Zavada, and S. J. Pearton,” Room-temperature-deposited indium-zinc oxide thin films with controlled conductivity.” Electrochem. Solid State Lett. vol. 10, no. (9), H267-H269, 2007
    [9] V. P. Verma, D. H. Kim, H. Jeon, M. Jeon, and W. Choi,”Characteristics of low doped gallium-zinc oxide thin film transistors and effect of annealing under high vacuum.”Thin Solid Films. vol. 516, no. (23), pp. 8736-8739, 2008
    [10] W. Lee, R. P. Dwivedi, C. Hong, H. W. Kim, N. Cho, and C. Lee,”Enhancement of the electrical properties of Al-doped ZnO films deposited on ZnO-buffered glass substrates by using an ultrathin aluminum underlayer.” J. Mater. Sci. vol. 43, pp. 1159-1161, 2008
    [11] C. Lee, R. P. Dwivedi, W. Lee, C. Hong, W. I. Lee, and H. W. Kim, “IZO/Al/GZO multilayer films to replace ITO films.”J. Mater. Sci. Mater. Electron. vol. 19, pp. 981-985, 2008
    [12] Yabuta, M. Sano, K. Abe, T. Aiba, T. Den, K. Nomura, T. Kamiya, H. Hosono, “High-mobility thin-film transistor with amorphous InGaZnO4 channel fabricated by room temperature rf-magnetron sputtering.” Appl. Phys. Lett. vol. 89, 112123, 2006
    [13] R. Hayashi, M. Ofuji, N. Kaji, K. Takahashi, K. Abe, H. Yabuta, M. Sano, H. Kumomi, K. Nomura, T. Kamiya, M. Hirano, H. Hosono,“Circuits using uniform TFTs based on amorphous In‐Ga‐Zn‐O.” J. Soc. Inf. Display vol.15, no. (11) pp. 915-921, 2007
    [14] J. K. Jeong, J. H. Jeong, H. W. Yang, J. S. Park, Y. G. Mo, and H. D. Kim, “High performance thin film transistors with cosputtered amorphous indium gallium zinc oxide channel.” Appl. Phys. Lett. vol. 91, no. (11), 113505, 2007
    [15] G. J. Lee, J. Kim, J. H. Kim, S. M. Jeong, J. E. Jang, and J. Jeong, “High performance, transparent a-IGZO TFTs on a flexible thin glass substrate.” Semicond. Sci. Technol. vol. 29, no. (3), 035003, 2014
    [16] S. Jeong, Y. G. Ha, J. Moon, A. Facchetti, and T. J. Marks.”Role of gallium doping in dramatically lowering amorphous‐oxide processing temperatures for solution‐derived indium zinc oxide thin‐film transistors.” Adv. Mater. vol. 22, no. (12), 1346-1350, 2010
    [17] J. G. Um, M. Mativenga, and J. Jang,”Mechanism of positive bias stress-assisted recovery in amorphous-indium-gallium-zinc-oxide thin-film transistors from negative bias under illumination stress.” Appl. Phys. Lett. vol. 103, no. (3), 033501, 2013
    [18] J. Cai, D. Han, Y. Geng, W. Wang, L. Wang, S. Zhang, Y. Wang,“High-performance transparent AZO TFTs fabricated on glass substrate.” IEEE Trans. Electron Dev. vol. 60, no. (7), pp. 2432-2435, 2013
    [19] L. Yue, H. Pu, H. Li, S. Pang, and Q. Zhang. ”Dip-coated Al–In–Zn–O thin-film transistor with poly-methylmethacrylate gate dielectric.” J. Phys. D vol. 46, no. (44), 445106, 2013
    [20] C. H. Ahn, B. H. Kong, H. Kim, H. K. Cho, “Improved electrical stability in the Al doped ZnO thin-film-transistors grown by atomic layer deposition.” J. Electrochem. Soc. vol. 158, no. (2), pp. H170-H173, 2011
    [21] K. Jang, H. Park, S. Jung, N. Van Duy, Y. Kim, J. Cho, S. Park,”Optical and electrical properties of 2 wt.% Al2O3-doped ZnO films and characteristics of Al-doped ZnO thin-film transistors with ultra-thin gate insulators.” Thin Solid Films. vol. 518, no. (10), pp. 2808-2811, 2010
    [22] J. Zhang, X. Li, J. Lu, N. Zhou, P. Guo, B. Lu, and Z. Ye,” Water assisted oxygen absorption on the instability of amorphous InAlZnO thin-film transistors.” RSC Adv. (2014) vol. 4, no. (7), 3145-3148, 2014
    [23] J. Zhang, J. Lu, Q. Jiang, B. Lu, X. Pan, L. Chen, N. Zhou,”Stability of amorphous InAlZnO thin-film transistors.” J. Vac. Sci. Technol. vol. 32, no. (1), 010602, 2014
    [24] Z. Ye, S. Yue, J. Zhang, X. Li, L. Chen, and J. Lu, “Annealing treatment on amorphous InAlZnO films for thin-film transistors.” IEEE Trans. Electron Dev. vol. 63, no. (9), pp. 3547-3551, 2016
    [25] S. M. Park, D. H. Lee, Y. S. Lim, D. K. Kim, and M. Yi, “Effect of aluminum addition to solution-derived amorphous indium zinc oxide thin film for an oxide thin film transistors.” Microelectron Eng. vol. 109, pp. 189-192, 2013
    [26] M. J. Park, J. Y. Bak, J. S. Choi, and S. M. Yoon,”Impact of aluminum incorporation into In-Zn-O active channel for highly-stable thin-film transistor using solution process.” ECS Solid State Lett. vol. 3, no. (9), Q44-Q46, 2014

    chap5

    [1] P. F. Carcia, R. S. McLean, M. H. Reilly, and Jr, G Nunes, “Transparent ZnO thin-film transistor fabricated by rf magnetron sputtering.” Appl. Phys. Lett., vol. 82, no. 7, pp. 1117-1119, 2003
    [2] P. M. Fortunato, E. M., Barquinha, A. C. M. B. G. Pimentel, A. M. Goncalves, A. J. Marques, L. M. Pereira, and R. F. Martins, “Fully transparent ZnO thin‐film transistor produced at room temperature.” Adv. Mater., vol. 17, no. 5, pp. 590-594, 2005.
    [3] E. M. Fortunato, P. M. Barquinha, A. C. Pimentel, A. M. Gonçalves, A. J. Marques, R. F. Martins, and L. M. Pereira, “Wide-bandgap high-mobility ZnO thin-film transistors produced at room temperature.” Appl. Phys. Lett., vol. 85, no. 13, pp. 2541-2543, 2004
    [4] C. P. Yang, S. P. Chang, S. J. Chang, T. H. Chang, C. J. Chiu, Y. L.Tsai, and T. Y. Liao, “Properties of Ga-Zn-O Ultraviolet Phototransistors Using Radio-Frequency Magnetron Co-Sputtering Method.,” Nanosci. Nanotechnol. Lett., vol. 10, no. 3, pp. 396-402, 2018
    [5] K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, “Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors.” Nature, vol. 432, no. 7016, pp. 488, 2004
    [6] W. T. Chen, and H. W. Zan, “High-performance light-erasable memory and real-time ultraviolet detector based on unannealed indium–gallium–zinc–oxide thin-film transistor.” IEEE Electron Device Lett., vol. 33, no.1, pp. 77-79, 2012
    [7] T. H. Chang, C. J. Chiu, S. J. Chang, T. Y. Tsai, T. H. Yang, Z. D. Huang, and W. Y.Weng,” Amorphous InGaZnO ultraviolet phototransistors with double-stack Ga2O3/SiO2 dielectric.” Appl. Phys. Lett., vol. 102, no.22, 221104, 2013
    [8] W. T. Chen, S. Y. Lo, S. C. Kao, H. W. Zan, C. C. Tsai, J. H. Lin, and C. C. Lee, “Oxygen-dependent instability and annealing/passivation effects in amorphous In–Ga–Zn–O thin-film transistors.” IEEE Electron Device Lett., vol. 32, no.11, pp. 1552-1554, 2011.
    [9] J. G. Um, M. Mativenga, and J. Jang, “Mechanism of positive bias stress-assisted recovery in amorphous-indium-gallium-zinc-oxide thin-film transistors from negative bias under illumination stress.” Appl. Phys. Lett., vol. 103, no.3, 033501, 2013
    [10] J. Cai, D. Han, Y. Geng, W. Wang, L. Wang, S. Zhang, Y. Wang, “High-performance transparent AZO TFTs fabricated on glass substrate.” IEEE Trans. Electron Dev., vol. 60, no.7, pp. 2432-2435, 2013
    [11] L. Yue, H. Pu, H. Li, S. Pang, and Q. Zhang, “Dip-coated Al–In–Zn–O thin-film transistor with poly-methylmethacrylate gate dielectric.” J. Phys. D., vol. 46, no.44, 445106, 2013
    [12] C. H. Ahn, B. H. Kong, H. Kim, H. K. Cho, “Improved electrical stability in the Al doped ZnO thin-film-transistors grown by atomic layer deposition.” J. Electrochem. Soc., vol. 158, no.2, pp. H170-H173, 2011
    [13] K. Jang, H. Park, S. Jung, N. Van Duy, Y. Kim, J. Cho, S. Park, “Optical and electrical properties of 2wt.% Al2O3-doped ZnO films and characteristics of Al-doped ZnO thin-film transistors with ultra-thin gate insulators.” Thin Solid Films., vol. 518, no.10, pp. 2808-2811, 2010
    [14] J. Zhang, X. Li, J. Lu, N. Zhou, P. Guo, B. Lu, and Z. Ye, “Water assisted oxygen absorption on the instability of amorphous InAlZnO thin-film transistors.” RSC Adv., vol. 4, no.7, pp. 3145-3148, 2014
    [15] J. Zhang, J. Lu, Q. Jiang, B. Lu, X. Pan, L. Chen, N. Zhou, “Stability of amorphous InAlZnO thin-film transistors.” J. Vac. Sci., Technol. vol. 32, no.1, 010602, 2014
    [16] Z. Ye, S. Yue, J. Zhang, X. Li, L. Chen, and J. Lu, “Annealing Treatment on Amorphous InAlZnO Films for Thin-Film Transistors.” IEEE Trans. Electron Dev., vol. 63, no. 9, pp. 3547-3551, 2016
    [17] J. B. Kim, C. Fuentes-Hernandez, W. J. Potscavage Jr, X. H. Zhang, and B. Kippelen, “Low-voltage InGaZnO thin-film transistors with Al2O3 gate insulator grown by atomic layer deposition.” Appl. Phys. Lett., vol. 94, vol. 14, 142107, 2009
    [18] P. F. Carcia, R. S. McLean, and M. H. Reilly, “High-performance ZnO thin-film transistors on gate dielectrics grown by atomic layer deposition.” Appl. Phys. Lett., vol. 88, no. 12, 123509, 2006
    [19] S. J. Lim, S. J. Kwon, H. Kim, and J. S. Park, “High performance thin film transistor with low temperature atomic layer deposition nitrogen-doped ZnO.” Appl. Phys. Lett., vol. 91, no. 18, 183517, 2007
    [20] P. F. Carcia, R. S. McLean, and M. H. Reilly, “High-performance ZnO thin-film transistors on gate dielectrics grown by atomic layer deposition.” Appl. Phys. Lett., vol. 88, no. 12, 123509, 2006
    [21] T. H. Cheng, S. P.Chang, and S. J. Chang, “Electrical Properties of Indium Aluminum Zinc Oxide Thin Film Transistors.” J. Electron. Mater., pp. 1-6, 2018
    [22] J. Lee, J. S. Park, Y. S. Pyo, D. B. Lee, E. H. Kim, D. Stryakhilev, and Y. G. Mo, “The influence of the gate dielectrics on threshold voltage instability in amorphous indium-gallium-zinc oxide thin film transistors.” Appl. Phys. Lett., vol. 95, no. 12, 123502, 2009
    [23] J. Y. Li, S. P. Chang, M. H. Hsu, and S. J. Chang, “Photo-electrical properties of MgZnO thin-film transistors with high-k dielectrics.” IEEE Photon. Technol. Lett., vol. 99, no. 1, 2017
    [24] T. H. Chang, S. J. Chang, C. J. Chiu, C. Y. Wei, Y. M. Juan, and W. Y. Weng, “Bandgap-engineered in indium–gallium–oxide ultraviolet phototransistors.” IEEE Photon. Technol. Lett., vol. 27, no. 8, pp. 915-918, 2015
    [25] D. Kufer, T. L asanta, M. Bernechea, F. H. Koppens, and G. Konstantatos, “Interface engineering in hybrid quantum dot–2D phototransistors.” ACS Photonics, vol. 3, no. 7, pp. 1324-1330, 2016
    [26] M. H. Hsu, J. C. Syu, S. P. Chang, W. L. Huang, and S. J. Chang, “Photoresponses of GaZTO Thin-Film Transistors Fabricated by co-sputtering method.” IEEE Sens. Lett., 2018
    [27] J. Y. Li, S. P. Chang, M. H. Hsu, and S. J. Chang, “High responsivity MgZnO ultraviolet thin-film phototransistor developed using radio frequency sputtering.” Materials., vol. 10, no. 2, pp. 126, 2017
    [28] B. Cook, Q. Liu, M. Gong, D. Ewing, M. Casper, A. Stramel, and J. Wu, “Printing High-Performance Tungsten Oxide Thin Film Ultraviolet Photodetectors on ZnO Quantum Dot Textured SiO2 Surface.” IEEE Sens. J., vol. 18, no. 23, pp. 9542-9547, 2018
    [29] M. Sun, Q. Fang, Z. Zhang, D. Xie, Y. Sun, J. Xu, and Y. Zhang, “All-Inorganic Perovskite Nanowires–InGaZnO Heterojunction for High-Performance Ultraviolet–Visible Photodetectors.” ACS Appl. Mater. Interfaces., vol. 10, no. 8, pp. 7231-7238, 2018
    [30] S. J. Chang, T. H. Chang, W. Y. Weng, C. J. Chiu, and S. P. Chang, “Amorphous InGaZnO ultraviolet phototransistors with a thin Ga2O3 layer.” IEEE J. Sel. Top. Quantum Electron., vol. 20, no. 6, pp. 125-129, 2014

    chap6

    [1] P. F. Carcia, R. S. McLean, M. H. Reilly, and Jr, G Nunes, “Transparent ZnO thin-film transistor fabricated by rf magnetron sputtering.” Appl. Phys. Lett., vol. 82, no. 7, pp. 1117-1119, 2003
    [2] P. M. Fortunato, E. M., Barquinha, A. C. M. B. G. Pimentel, A. M. Goncalves, A. J. Marques, L. M. Pereira, and R. F. Martins, “Fully transparent ZnO thin‐film transistor produced at room temperature.” Adv. Mater., vol. 17, no. 5, pp. 590-594, 2005
    [3] E. M. Fortunato, P. M. Barquinha, A. C. Pimentel, A. M. Gonçalves, A. J. Marques, R. F. Martins, and L. M. Pereira, “Wide-bandgap high-mobility ZnO thin-film transistors produced at room temperature.” Appl. Phys. Lett., vol. 85, no. 13, pp. 2541-2543, 2004
    [4] C. P. Yang, S. P. Chang, S. J. Chang, T. H. Chang, C. J. Chiu, Y. L.Tsai, and T. Y. Liao, “Properties of Ga-Zn-O Ultraviolet Phototransistors Using Radio-Frequency Magnetron Co-Sputtering Method.,” Nanosci. Nanotechnol. Lett., vol. 10, no. 3, pp. 396-402, 2018
    [5] K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, “Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors.” Nature, vol. 432, no. 7016, pp. 488, 2004
    [6] H. Hosono, K. Nomura, Y. Ogo, T. Uruga, and T. Kamiya, “Factors controlling electron transport properties in transparent amorphous oxide semiconductors.” J. Non-Cryst. Solids, vol. 354, no. (19-25), pp. 2796-2800, 2008
    [7] K. Nomura, A. Takagi, T. Kamiya, H. Ohta, M. Hirano, and H. Hosono, “Amorphous oxide semiconductors for high-performance flexible thin-film transistors.” Jpn. J. Appl. Phys., vol. 45, no. (5S), pp. 4303, 2006
    [8] H. Hosono, “Ionic amorphous oxide semiconductors: Material design, carrier transport, and device application.” J. Non-Cryst. Solids, vol. 352, no. (9-20), pp. 851-858, 2006
    [9] S. Jeong, Y. G. Ha, J. Moon, A. Facchetti, and T. J. Marks, “Role of gallium doping in dramatically lowering amorphous‐oxide processing temperatures for solution-derived indium zinc oxide thin‐film transistors.” Adv. Mater., vol. 22, no. (12), pp. 1346-1350, 2010
    [10] W. T. Chen, and H. W. Zan, “High-performance light-erasable memory and real-time ultraviolet detector based on unannealed indium–gallium–zinc–oxide thin-film transistor.” IEEE Electron Device Lett., vol. 33, no.1, pp. 77-79, 2012
    [11] T. H. Chang, C. J. Chiu, S. J. Chang, T. Y. Tsai, T. H. Yang, Z. D. Huang, and W. Y.Weng,” Amorphous InGaZnO ultraviolet phototransistors with double-stack Ga2O3/SiO2 dielectric.” Appl. Phys. Lett., vol. 102, no.22, 221104, 2013
    [12] W. T. Chen, S. Y. Lo, S. C. Kao, H. W. Zan, C. C. Tsai, J. H. Lin, and C. C. Lee, “Oxygen-dependent instability and annealing/passivation effects in amorphous In–Ga–Zn–O thin-film transistors.” IEEE Electron Device Lett., vol. 32, no.11, pp. 1552-1554, 2011
    [13] J. G. Um, M. Mativenga, and J. Jang, “Mechanism of positive bias stress-assisted recovery in amorphous-indium-gallium-zinc-oxide thin-film transistors from negative bias under illumination stress.” Appl. Phys. Lett., vol. 103, no.3, 033501, 2013
    [14] J. Zhang, X. Li, J. Lu, N. Zhou, P. Guo, B. Lu, and Z. Ye, “Water assisted oxygen absorption on the instability of amorphous InAlZnO thin-film transistors.” RSC Adv., vol. 4, no.7, pp. 3145-3148, 2014
    [15] J. Zhang, J. Lu, Q. Jiang, B. Lu, X. Pan, L. Chen, N. Zhou, “Stability of amorphous InAlZnO thin-film transistors.” J. Vac. Sci., Technol. vol. 32, no.1, 010602, 2014
    [16] Z. Ye, S. Yue, J. Zhang, X. Li, L. Chen, and J. Lu, “Annealing Treatment on Amorphous InAlZnO Films for Thin-Film Transistors.” IEEE Trans. Electron Dev., vol. 63, no. 9, pp. 3547-3551, 2016
    [17] K. Jang, H. Park, S. Jung, N. Van Duy, Y. Kim, J. Cho, S. Park, “Optical and electrical properties of 2wt.% Al2O3-doped ZnO films and characteristics of Al-doped ZnO thin-film transistors with ultra-thin gate insulators.” Thin Solid Films., vol. 518, no.10, pp. 2808-2811, 2010
    [18] A. V. Babichev, H. Zhang, P. Lavenus, F. H. Julien, A. Y. Egorov, Y. T. Lin, and M. Tchernycheva, “GaN nanowire ultraviolet photodetector with a graphene transparent contact.” Appl. Phys. Lett., vol. 103, no. 20, pp. 201103. 2013
    [19] Y. Lu, Z. Wu, W. Xu, and S. Lin, “ZnO quantum dot-doped graphene/h-BN/GaN-heterostructure ultraviolet photodetector with extremely high responsivity.” Nanotechnology, vol. 27, no. 48, 48LT03, 2016
    [20] B. Cook, Q. Liu, M. Gong, D. Ewing, M. Casper, A. Stramel, and J. Wu, “Printing High-Performance Tungsten Oxide Thin Film Ultraviolet Photodetectors on ZnO Quantum Dot Textured SiO2 Surface.” IEEE Sens. J., vol. 18, no. 23, pp. 9542-9547, 2018
    [21] S. Huang, X. Liu, K. Wei, G. Liu, X. Wang, B. Sun, and M. Hua, “O3-sourced atomic layer deposition of high quality Al2O3 gate dielectric for normally-off GaN metal-insulator-semiconductor high-electron-mobility transistors.” Appl. Phys. Lett., vol. 106, no. 3, pp. 033507, 2015
    [22] T. Kim, Y. Nam, J. Hur, S. H. K. Park, and S. Jeon, “The influence of hydrogen on defects of In–Ga–Zn–O semiconductor thin-film transistors with atomic-layer deposition of Al2O3.” IEEE Electron Device Lett., vol. 37, no. 9, pp. 1131-1134, 2016
    [23] Y. J. Kim, S. M. Kim, S. Heo, H. Lee, H. I. Lee, K. E. Chang, and B. H. Lee. “High-pressure oxygen annealing of Al2O3 passivation layer for performance enhancement of graphene field-effect transistors.” Nanotechnology, vol. 29, no. 5, pp. 055202, 2018
    [24] S. Y. Na, Y. M. Kim, D. J. Yoon, and S. M. Yoon, “Improvement in negative bias illumination stress stability of In–Ga–Zn–O thin film transistors using HfO2 gate insulators by controlling atomic-layer-deposition conditions.” J. Phys. D, vol. 50, no. 49, pp. 495109, 2017
    [25] J. Cai, D. Han, Y. Geng, W. Wang, L. Wang, S. Zhang, Y. Wang, “High-performance transparent AZO TFTs fabricated on glass substrate.” IEEE Trans. Electron Dev., vol. 60, no.7, pp. 2432-2435, 2013
    [26] L. Yue, H. Pu, H. Li, S. Pang, and Q. Zhang, “Dip-coated Al–In–Zn–O thin-film transistor with poly-methylmethacrylate gate dielectric.” J. Phys. D., vol. 46, no.44, 445106, 2013
    [27] C. H. Ahn, B. H. Kong, H. Kim, H. K. Cho, “Improved electrical stability in the Al doped ZnO thin-film-transistors grown by atomic layer deposition.” J. Electrochem. Soc., vol. 158, no.2, pp. H170-H173, 2011
    [28] T. H. Cheng, S. P. Chang, and S. J. Chang, “Electrical properties of indium aluminum zinc oxide thin film transistors.” J. Electron. Mater., vol 47, no. 11, pp. 6923-6928, 2018
    [29] W. Xu, J. Jiang, S. Xu, Y. Zhang, H. Xu, L. Han, and X. Feng, “Effect of substrate temperature on sputtered indium-aluminum-zinc oxide films and thin film transistors.” J. Alloys Compd., vol 791, pp. 773-778, 2019
    [30] R. Yao, Z. Zheng, M. Xiong, X. Zhang, X. Li, H. Ning, and J. Peng,” Low-temperature fabrication of sputtered high-k HfO2 gate dielectric for flexible a-IGZO thin film transistors.” Appl. Phys. Lett., vol. 112, no. 10, 103503, 2018

    無法下載圖示 校內:2025-01-18公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE