簡易檢索 / 詳目顯示

研究生: 張晏瑜
Chang, Yan-Yu
論文名稱: 結合光學及慣性量測技術之軌道線形檢測系統雛型
A prototype of optical and inertial measurement unit based track inspection system
指導教授: 郭振銘
Kuo, Chen-Ming
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 94
中文關鍵詞: 軌道線形軌道檢查車光學感測器慣性導航系統EN13848
外文關鍵詞: Track geometry, Track inspection vehicle, Laser displacement meter, Inertial navigation system, EN13848
相關次數: 點閱:162下載:26
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著台灣軌道建設的興起,鐵路養護里程數越來越長,台灣現有軌道檢查車數量用於軌道線形定期檢測明顯不足。軌道檢查車配備各種感測器造價昂貴且維修不易,軌道檢測技術日新月異,台灣目前尚無自有的軌道檢測技術,現有之軌道檢查車為國外引進之舊有型式,由於其計算方法限制無法符合高速鐵路養護規範須量測200公尺不整量,因此可能導致行車舒適性與安全性疑慮。
    本研究試使用各種感測器組裝一輛「軌檢台車」量測軌道五大線形:軌距、水平、高低、方向、平面性,期望透過自組式軌道檢查系統探究台灣自行發展軌道檢查車的可行性。量測系統採用的主要感測器項目為二維光學測距儀、慣性導航系統(INS/GNSS),使用兩者擷取鋼軌斷面資訊與鋼軌三維空間位置,裝設各項輔助儀器於一推車平台上,並事先進行量測系統率定。
    實際量測於臺鐵台南支線,其結果與歐盟規範EN13848規範之軌道檢查車量測標準比較,使用統計分析與空間頻率分析檢驗重複性、再現性,依此評估量測系統之可靠度與穩定性。實驗結果發現使用2D光學測距儀擷取鋼軌輪廓再後處理計算軌距,精確度可達1~2 mm的精確度;利用慣性導航系統回復軌道三維空間座標,精確度也達公分等級,但其誤差來源與量測準確度尚須探討。

    With the rise of railway construction in Taiwan, the maintenance mileage is getting longer and longer. The number of existing track inspection vehicles in Taiwan for regular inspection is obviously inadequate. Currently, we still use old type track inspection vehicles that can barely measure the rail irregularity of 40 m. Therefore, Taiwan high speed rail stipulate measurement of rail irregularity should be 200 m to ensure train’s safety. Taiwan lacks our own track inspection system, and foreign railway recording vehicles equipped with a variety of sensors which are expensive and difficult to repair.
    In this study, we use a variety of sensors to assemble a ‘Track inspection trolley’ measuring the track geometry: track gauge, cross level, longitudinal level, alignment, twist. Expect through the self-organized track inspection system to explore Taiwan's own development of the track inspection vehicle feasibility. The main sensor used in the measurement system is the 2D laser displacement meter and the inertial navigation system. Also, other auxiliary equipment is installed on the trolley. The Track inspection trolley has been calibration correction before the experiments.
    The actual measurement was in the Taiwan Tainan branch line. In the end, we compared the measuring results to standard EN13848 that specifically for the track inspection system with statistical analysis and spatial frequency analysis to test repeatability, reproducibility, and thus assess the reliability and stability of the measurement system. The results show that the use of 2D laser displacement meter to extract the rail profile and then calculate the gauge, the accuracy of up to 1 ~ 2 mm accuracy; the use of inertial navigation system to restore the three-dimensional coordinates of the track, the accuracy of the rating level, but its error source and measurement accuracy still need to be discussed.

    摘要 II EXTENDED ABSTRACT III 誌謝 VIII 表目錄 XII 圖目錄 XIII 第1章、 緒論 1 1.1 研究動機 1 1.2 研究範圍 1 1.3 研究之目的與重要性 2 1.4 研究流程 3 第2章、 軌道線形量測相關背景與理論方法 5 2.1 文獻回顧 5 2.1.1 各國軌道檢查車 5 2.1.2 軌道不整量量測技術相關文獻 10 2.1.3 軌道檢查推車相關文獻 13 2.2 軌道不整量定義與線形量測規範 15 2.2.1 軌道不整量定義 15 2.2.2 軌道線形量測規範 19 2.3 軌道線形量測方法相關理論 23 2.3.1 弦測法原理(Chord method) 23 2.3.2 雷射測距原理 26 2.3.3 定位定向感測器系統 29 2.3.4 傅立葉轉換(Fourier Transform, FT) 31 第3章、 研究方法 32 3.1 量測系統建置 32 3.2 資料擷取處理 37 3.3 軌道線形計算 41 3.3.1 軌距 41 3.3.2 超高 41 3.3.3 高低 42 3.3.4 方向 43 3.3.5 平面性 44 3.4 量測儀器率定 45 第4章、 軌道線形量測實驗 50 4.1 試驗軌實驗 50 4.1.1 試驗軌實驗規劃 51 4.1.2 試驗軌實驗結果與討論分析 60 4.2 臺鐵側線實驗 62 4.2.1 臺鐵側線實驗規劃 62 4.2.2 臺鐵側線實驗結果與討論分析 62 4.2.2.1 軌距 64 4.2.2.2 超高 65 4.2.2.3 高低 66 4.2.2.4 方向 67 4.2.2.5 平面性 68 4.2.3 臺鐵側線實驗精確度 69 4.2.3.1 重複性分析(Repeatability) 69 4.2.3.2 再現性分析(Reproducibility) 72 第5章、 結論與建議 75 5.1 結論 75 5.2 建議 76 附錄A 重複性分析 77 附錄B 再現性分析 85 參考文獻 93

    [ 1 ] http://www.plasseramerican.com/en/machines-systems/measuring-work-em-120.html
    [ 2 ] http://www.mermecgroup.com/15/inspect.php
    [ 3 ] Grassie, S. L. Measurement of railhead longitudinal profiles: a comparison of different techniques. Wear, 191(1-2), 245-251. (1996).
    [ 4 ] Naganuma, Y., Tanaka, H., & Ichikawa, K. High Speed Track Inspection Car in New Dr. Yelow. Paper presented at the Proc. of the World Congress on Railway Research (WCRR 2001). (2001).
    [ 5 ] ONO, S., Numakura, A., & Odaka, T. High-speed track inspection technologies. JR East Technical Review(2). (2003).
    [ 6 ] Kobayashi, M., Naganuma, Y., Nakagawa, M., & Okumura, T. Digital inertial algorithm for recording track geometry on commercial shinkansen trains. WIT transactions on the built environment, 103, 683-692. (2008).
    [ 7 ] http://ensco.com/rail
    [ 8 ] Saadat, S., Stuart, C., Carr, G., & Payne, J. FRA Autonomous Track Geometry Measurement System Technology Development: Past, Present, and Future. Paper presented at the 2014 Joint Rail Conference. (2014).
    [ 9 ] Foeillet, G., Coudert, F., & Delcourt, V. IRIS 320 is a global concept inspection vehicle merging engineering and R&D tools for infrastructure maintenance. Paper presented at the Proceedings of the Eight World Congress onRailway research, Seoul, South Korea. (2008).
    [ 10 ] Stiebel, D, B Nelain, and N Vincent. How to measure and transfer efficiencies of vibration-mitigation measures: results of the European project RIVAS. In Proceedings of ISMA 2012 international conference on noise and vibration engineering, Leuven, Belgium. (2012).
    [ 11 ] 舒丛丛.高速轨道检测系统关键技术研究. 西南交通大学. (2015).
    [ 12 ] YAZAWA, E., & TAKESHITA, K. Development of measurement device of track irregularity using inertial mid-chord offset method. Quarterly Report of RTRI, 43(3), 125-130. (2002).
    [ 13 ] Hisa, T., Kanaya, M., Sakai, M., & Hamaoka, K. Rail and contact line inspection technology for safe and reliable railway traffic. Hitachi Review, 61(7), 325-330. (2012).
    [ 14 ] Lorente, A., Llorca, D., Velasco, M., García, J., & Domínguez, F. Detection of Range-Based Rail Gage and Missing Rail Fasteners: Use of High-Resolution Two-and Three-Dimensional Images. Transportation Research Record: Journal of the Transportation Research Board(2448), 125-132. (2014).
    [ 15 ] Bokhman, E., Boronachin, A., Filatov, Y. V., Larionov, D. Y., Podgornaya, L., Shalymov, R., & Zuzev, G. Optical-inertial system for railway track diagnostics. Paper presented at the Inertial Sensors and Systems Symposium (ISS), 2014 DGON.
    [ 16 ] Chen, Q., Niu, X., Zhang, Q., & Cheng, Y. Railway track irregularity measuring by GNSS/INS integration. Navigation, 62(1), 83-93. (2015).
    [ 17 ]陈起金. GNSS-INS组合导航在高铁轨道不平顺检测中的应用. 武汉大学工程硕士专业学位论文. (2013).
    [ 18 ] BS-EN-13848-1:2003 Railway applications. Track. Track geometry quality. Characterisation of track geometry.
    [ 19 ] BS-EN-13848-2:2006 Railway applications. Track. Track geometry quality. Measuring system— track recording vehicles
    [ 20 ] 林建忠.雷射測距技術與研究現況. Photonics Industry & Technology Development Association (PIDA). (1999).
    [ 21 ] Bien, F., Camac, M., Caulfield, H., & Ezekiel, S. Absolute distance measurements by variable wavelength interferometry. Applied optics, 20(3), 400-403. (1981).
    [ 22 ] Strand, T. Optical three-dimensional sensing for machine vision. Optical engineering, 24(1), 240133-240133. (1985).
    [ 23 ] 張鈞傑. 任意頻率調變式雷射測距儀. 中央大學光電科學研究所學位論文, 1-97. (2006).
    [ 24 ] 李育華. 車載移動式製圖系統之系統率定及其直接地理定位之效能分析, 國立成功大學測量及空間資訊學系碩士論文. (2010).
    [ 25 ] 黃芸玟, 蔡孟倫, 江凱偉. 緊耦合與鬆耦合式低成本 IMU/GPS 整合式 POS 於移動測繪應用之適用性分析. 地籍測量: 中華民國地籍測量學會會刊, 28(4), 1-16. (2009).

    下載圖示 校內:2022-07-01公開
    校外:2022-07-01公開
    QR CODE