簡易檢索 / 詳目顯示

研究生: 區宗暐
Ou, Tsung-Wei
論文名稱: 四旋翼軌跡追蹤與載物控制之動態參數估測系統
Quadrotor Tracking and Load-Carrying Control System with Dynamic Parameter Estimation
指導教授: 劉彥辰
Liu, Yen-Chen
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 209
中文關鍵詞: 四旋翼四旋翼載物控制系統適應控制逆向步進控制參數不確定性軌跡追蹤
外文關鍵詞: quadrotor system, quadrotor transportation system, adaptive control, backstepping control, parameter uncertainty, trajectory tracking
相關次數: 點閱:155下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 四旋翼具有成本低、結構簡單,具備垂直起降及懸停的特性,基於上述的特性,相繼應用於軍情探勘、地形探索、天災救援、物資運送、交通監測等等。根據四旋翼的模型可以得知,四旋翼具有強烈的非線性性質,對於非線性的模型,使用非線性控制器相較於線性PID控制器具有更好的控制結果。然而,不確定的系統參數將會影響非線性控制器的控制效能。非線性的控制器中,會使用到相關的系統參數,例如質量、轉動慣量等等。對於四旋翼的轉動慣量,目前主要是使用CAD模型建模或是透過測試平台進行量測,而質量則是透過磅秤進行量測。但事先量測的方式,難以使用在四旋翼系統參數發生變化的時候,例如掛載物體。目前針對掛載物體的估測方式,主要使用最小平方法來進行估測及運算,然而這種方法需要使用到加速度或角加速度來進行運算,若加速度由位置的二次微分取得,將容易受到雜訊的影響。

    基於上述問題,本論文提出適應性逆向步進控制,將其運用在四旋翼的系統上,此控制方法主要針對系統參數的不確定性進行補償。四旋翼進行軌跡追蹤的同時估測系統參數,而不需要使用測試平台進行量測或者使用加速度項進行估測。四旋翼追蹤的軌跡為利用最佳化方式所產生的最小擺盪軌跡,並且以模擬驗證軌跡追蹤的效果以及進行了閉迴路系統的穩定性分析。此控制方法更可以延伸運用在四旋翼載物系統,四旋翼載物系統分為夾爪載物系統以及繩載物系統進行討論,當系統的整體參數因為承載物體而發生變動時,透過此控制方法進行補償,使四旋翼依然可以達到軌跡的追蹤。本論文也以實驗的方式驗證,證明此適應性逆向步進控制在四旋翼系統及四旋翼載物系統的可行性以及軌跡追蹤的表現。

    In this paper, we proposed an adaptive backstepping control for quadrotor and quadrotor transportation system to follow a trajectory in the presence of dynamic uncertainty. Nonlinear tracking controller for quadrotor system has been developed previously with the assumption of known system parameters; however, these parameters are difficult to obtain accurately.
    In this paper, adaptive control algorithms are developed with backstepping control to ensure stability and tracking performance of quadrotors without the knowledge of dynamic parameters. It is very convenient for some applications, such as transportation, emergency rescue, and industrial application. When the quadrotor equips with gripper or cable to transport a payload, it will change the system parameters such as mass and moment of inertia. The change of system parameters will fail to track trajectory. In our method, we estimate the system parameter automatically for quadrotor and quadrotor transportation system.
    By using the minimum snap trajectory, simulations and experiments for quadrotor and quadrotor transportation system demonstrate that the proposed controller can guarantee tracking performance.

    圖目錄 xv 表目錄 xviii 第一章、緒論 1 1.1 研究背景 1 1.2 文獻回顧 8 1.3 研究動機與問題定義 10 1.4 論文架構 11 第二章、基礎理論 14 2.1 非線性系統 14 2.1.1 系統穩定性 14 2.1.2 Lyapunvo穩定性分析 16 2.1.3 Lyapunov均勻穩定 17 2.2 微分平系統 18 第三章、四旋翼動態模型 19 3.1 參考座標 19 3.2 四旋翼的四種姿態 20 3.3 四旋翼的動態模型推導 21 第四章、適應性逆向步進控制 29 4.1 四旋翼的控制架構 29 4.2 適應性逆向步進控制器 30 4.3 穩定性證明 42 4.4 軌跡規劃 45 4.4.1 成本函數 45 4.5 模擬結果 50 4.6 控制器比較 55 第五章、四旋翼載物系統 61 5.1 夾爪載物系統 62 5.1.1 夾爪載物系統模型 62 5.1.2 模擬結果 65 5.2 控制器比較 70 5.3 繩載物系統 70 5.3.1 繩載物系統動態模型 70 5.3.2 繩張力補償 74 5.3.3 模擬結果 76 第六章、實驗架構 83 6.1 實驗設備 83 6.1.1 四旋翼 83 6.1.2 機器人作業系統 91 6.1.3 定位系統 92 6.1.4 MAVLink 通訊協定 92 6.2 實驗流程 93 6.3 四旋翼追蹤實驗結果 96 6.3.1 軌跡1-最小擺盪軌跡 96 6.3.2 軌跡2-圓軌跡 101 6.4 夾爪系統追蹤實驗結果 105 6.4.1 軌跡1-最小擺盪軌跡 105 6.4.2 軌跡2-圓軌跡 111 6.5 繩載物系統追蹤實驗結果 115 6.6 實驗結果討論 116 第七章、結論與未來展望 123 7.1 結論 123 7.1.1 研究貢獻總結 124 7.2 未來展望 124 參考文獻 126 附錄A - 模擬軌跡 131 A-1 四旋翼系統模擬軌跡 131 A-2 夾爪系統模擬軌跡 137 A-3 繩載物系統模擬軌跡 137 附錄B - 實驗軌跡 141 B-1 四旋翼載物實驗軌跡 142 B-2 夾爪系統實驗軌跡 147 B-3 繩載物系統實驗軌跡 154 附錄C - Experiment Codes 159 C-1 Offboard Control 159 C-2 Trajectory Generation 203

    [1] Vijay Kumar and Nathan Michael. Opportunities and challenges with autonomous micro aerial vehicles. The International Journal of Robotics Research, 31(11):1279-1291, 2012.
    [2] Mahmoud Elsamanty, Ahmed Khalifa, Mohamed Fanni, Ahmed Ramadan, and Ahmed Abo-Ismail. Methodology for identifying quadrotor parameters, attitude estimation and control. In IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), pages 1343-1348, 2013.
    [3] Durgesh Haribhau Salunkhe, Siddhant Sharma, Sujal Amrit Topno, Chandana Darapaneni, Amol Kankane, and Suril V Shah. Design, trajectory generation and control of quadrotor research platform. In IEEE International Conference on Robotics and Automation for Humanitarian Applications (RAHA), pages 1-7, 2016.
    [4] Daniel Mellinger, Quentin Lindsey, Michael Shomin, and Vijay Kumar. Design, modeling, estimation and control for aerial grasping and manipulation. In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages 2668-2673, 2011.
    [5] Tammaso Bresciani. Modelling, identification and control of a quadrotor helicopter. Master's Thesis, Department of Automatic Control, Lund University, October 2008.
    [6] Jing Zhou and Changyun Wen. Adaptive backstepping control of uncertain systems: Nonsmooth nonlinearities, interactions or time-variations. Springer, 2008.
    [7] Zhicheng Hou, Weijun Wang, Gong Zhang, and Changsoo Han. A survey on the formation control of multiple quadrotors. In International Conference on Ubiquitous Robots and Ambient Intelligence (URAI), pages 219-225, 2017.
    [8] Daniel Mellinger and Vijay Kumar. Minimum snap trajectory generation and control for quadrotors. In IEEE International Conference on Robotics and Automation (ICRA), pages 2520-2525, 2011.
    [9] Liza Panagiotopoulou. " Eye in the sky" project-intelligent transport infrastructure for traffic monitoring and mobility information. In IEEE 59th Vehicular Technology Conference. VTC 2004-Spring, volume 5, pages 2926-2930, 2004.
    [10] Alex Kushleyev, Daniel Mellinger, Caitlin Powers, and Vijay Kumar. Towards a swarm of agile micro quadrotors. Autonomous Robots, 35(4):287-300, 2013.
    [11] Dingjiang Zhou and Mac Schwager. Vector field following for quadrotors using differential flatness. In IEEE International Conference on Robotics and Automation (ICRA), pages 6567-6572, 2014.
    [12] Dingjiang Zhou and Mac Schwager. Virtual rigid bodies for coordinated agile maneuvering of teams of micro aerial vehicles. In IEEE International Conference on Robotics and Automation (ICRA), pages 1737-1742, 2015.
    [13] Nathan Michael, Daniel Mellinger, Quentin Lindsey, and Vijay Kumar. The grasp multiple micro-UAV testbed. IEEE Robotics and Automation Magazine, 17(3):56-65, 2010.
    [14] Changsu Ha, Jaemin Yoon, Changu Kim, Yonghan Lee, Seongjin Kwon, and Dongjun Lee. Teleoperation of a platoon of distributed wheeled mobile robots with predictive display. Autonomous Robots, pages 1-18, 2018.
    [15] Yingcai Bi and Haibin Duan. Implementation of autonomous visual tracking and landing for a low-cost quadrotor. Optik-International Journal for Light and Electron Optics, 124(18):3296-3300, 2013.
    [16] Abdelhamid Tayebi and Stephen McGilvray. Attitude stabilization of a VTOL quadrotor aircraft. IEEE Transactions on Control Systems Technology, 14(3):562-571, 2006.
    [17] I ̇. Can Dikmen, Aydemir Arisoy, and Hakan Temeltas. Attitude control of a quadrotor. In IEEE International Conference on Recent Advances in Space Technologies, pages 722-727, 2009.
    [18] Sara Spedicato, Antonio Franchi, and Giuseppe Notarstefano. From tracking to robust maneuver regulation: An easy-to-design approach for vtol aerial robots. In IEEE International Conference on Robotics and Automation (ICRA), pages 2965-2970, 2016.
    [19] Justin Thomas, Joe Polin, Koushil Sreenath, and Vijay Kumar. Avian-inspired grasping for quadrotor micro UAVs. In International Design Engineering Technical Conferences & Computers and Information in Engineering Conference, pages 1-9, 2013.
    [20] Yaser Alothman, Wesam Jasim, and Dongbing Gu. Quad-rotor lifting-transporting cable-suspended payloads control. In IEEE International Conference on Automation and Computing (ICAC), pages 1-6, 2015.
    [21] Suseong Kim, Hoseong Seo, Seungwon Choi, and H Jin Kim. Vision-guided aerial manipulation using a multirotor with a robotic arm. IEEE/ASME Transactions On Mechatronics, 21(4):1912-1923, 2016.
    [22] Pratik Agarwal and Tom Brady. Slam strategy for an autonomous quadrotor. Technical report, University of Michigan, 2008.
    [23] Daniel Mellinger, Nathan Michael, and Vijay Kumar. Trajectory generation and control for precise aggressive maneuvers with quadrotors. The International Journal of Robotics Research, 31(5):664-674, 2012.
    [24] Taeyoung Lee, Melvin Leoky, and N Harris McClamroch. Geometric tracking control of a quadrotor UAV on SE (3). In IEEE Conference on Decision and Control (CDC), pages 5420-5425, 2010.
    [25] Djihad Matouk, Oussama Gherouat, Foudil Abdessemed, and Abdelouahab Hassam. Quadrotor position and attitude control via backstepping approach. In IEEE International Conference on Modelling, Identification and Control (ICMIC), pages 73-79, 2016.
    [26] Hyunsoo Yang and Dongjun Lee. Dynamics and control of quadrotor with robotic manipulator. In IEEE International Conference on Robotics and Automation (ICRA), pages 5544-5549, 2014.
    [27] Koushil Sreenath, Nathan Michael, and Vijay Kumar. Trajectory generation and control of a quadrotor with a cable-suspended load-a differentially-flat hybrid system. In IEEE International Conference on Robotics and Automation (ICRA), pages 4888-4895, 2013.
    [28] Matthew Turpin, Nathan Michael, and Vijay Kumar. Trajectory design and control for aggressive formation flight with quadrotors. Autonomous Robots, 33(1-2):143-156, 2012.
    [29] Martin Saska, Jan Chudoba, Libor Precil, Justin Thomas, Giuseppe Loianno, Adam Tresnak, Vojtech Vonasek, and Vijay Kumar. Autonomous deployment of swarms of micro-aerial vehicles in cooperative surveillance. In International Conference on Unmanned Aircraft Systems (ICUAS), pages 584-595, 2014.
    [30] Bing Xiao and Shen Yin. A new disturbance attenuation control scheme for quadrotor unmanned aerial vehicles. IEEE Transactions on Industrial Informatics, 13(6):2922-2932, 2017.
    [31] S. Islam, P.X. Liu, and A. El Saddik. Nonlinear adaptive control for quadrotor flying vehicle. Nonlinear Dynamics, 78(1):117-133, 2014.
    [32] Zachary T Dydek, Anuradha M Annaswamy, and Eugene Lavretsky. Adaptive control of quadrotor UAVs: A design trade study with flight evaluations. IEEE Transactions on Control Systems Technology, 21(4):1400-1406, 2013.
    [33] Chen Diao, Bin Xian, Qiang Yin, Wei Zeng, Haotao Li, and Yungao Yang. A nonlinear adaptive control approach for quadrotor UAVs. In Control Conference (ASCC), pages 223-228. IEEE, 2011.
    [34] Mu Huang, Bin Xian, Chen Diao, Kaiyan Yang, and Yu Feng. Adaptive tracking control of underactuated quadrotor unmanned aerial vehicles via backstepping. In Proceeding of IEEE American Control Conference (ACC), pages 2076-2081, 2010.
    [35] Hakim Bouadi, S Simoes Cunha, Antoine Drouin, and Felix Mora-Camino. Adaptive sliding mode control for quadrotor attitude stabilization and altitude tracking. In IEEE International Symposium on Computational Intelligence and Informatics (CINTI), pages 449-455, 2011.
    [36] Aleksandra Faust, Ivana Palunko, Patricio Cruz, Rafael Fierro, and Lydia Tapia. Learning swing-free trajectories for UAVs with a suspended load. In IEEE International Conference on Robotics and Automation (ICRA), pages 4902-4909, 2013.
    [37] Young-Hun Lim, Seong-Ho Kwon, Kyu-Hwan Kim, and Hyo-Sung Ahn. Implementation of load transportation using multiple quadcopters. In IEEE International Conference on Advanced Intelligent Mechatronics (AIM), pages 639-644, 2017.
    [38] Hyeonbeom Lee and H Jin Kim. Estimation, control, and planning for autonomous aerial transportation. IEEE Transactions on Industrial Electronics, 64(4):3369-3379, 2017.
    [39] Hyoin Kim, Hyeonbeom Lee, Seungwon Choi, Yung-kyun Noh, and H Jin Kim. Motion planning with movement primitives for cooperative aerial transportation in obstacle environment. In IEEE International Conference on Robotics and Automation (ICRA), pages 2328-2334, 2017.
    [40] Micah Corah and Nathan Michael. Active estimation of mass properties for safe cooperative lifting. In IEEE International Conference on Robotics and Automation (ICRA), pages 4582-4587, 2017.
    [41] Samir Bouabdallah and Roland Siegwart. Backstepping and sliding-mode techniques applied to an indoor micro quadrotor. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), pages 2247-2252, 2005.
    [42] Patricio Cruz and Rafael Fierro. Autonomous lift of a cable-suspended load by an unmanned aerial robot. In IEEE Conference on Control Applications (CCA), pages 802-807, 2014.
    [43] Wenjie Lou and Xiao Guo. Adaptive trajectory tracking control using reinforcement learning for quadrotor. International Journal of Advanced Robotic Systems, 13(1):38, 2016.
    [44] Jean-Jacques E Slotine, Weiping Li, et al. Applied nonlinear control, volume 199. Prentice hall Englewood Cliffs, NJ, 1991.
    [45] Michiel J Van Nieuwstadt and Richard M Murray. Real-time trajectory generation for differentially at systems. International Journal of Robust and Nonlinear Control: IFAC-Affiliated Journal, 8(11):995-1020, 1998.
    [46] Xiao Liang, Yongchun Fang, Ning Sun, and He Lin. Nonlinear hierarchical control for unmanned quadrotor transportation systems. IEEE Transactions on Industrial Electronics, 65(4):3395-3405, 2018.
    [47] Pixhawk官方網站. https://pixhawk.org/.
    [48] ROS Wiki. http://www.ros.org/.
    [49] ROS Wiki: mavros. http://wiki.ros.org/mavros.
    [50] Yen-Chen Liu and Mun-Hooi Khong. Adaptive control for nonlinear teleoperators with uncertain kinematics and dynamics. IEEE/ASME Transactions on Mechatronics, 20(5):2550-2562, 2015.

    無法下載圖示 校內:2023-08-29公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE