簡易檢索 / 詳目顯示

研究生: 蔡名杰
Tsai, Min-Jay
論文名稱: 利用埃氏有限迴圈軌跡理論鑑別二階時延模式
Use of the A-Locus Limit-Cycle Theory to Identify Second-Order plus Delay Models
指導教授: 黃世宏
Hwang, Shyh-Hong
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2003
畢業學年度: 91
語文別: 中文
論文頁數: 84
中文關鍵詞: 替續器埃氏有限迴圈軌跡理論
外文關鍵詞: relay, A-Locus Limit-Cycle Theory
相關次數: 點閱:119下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 利用替續器產生之有限迴圈現象來取得程序動態訊息的鑑別技術已經在工業界獲得廣泛的應用。Kaya和Atherton (2001)利用埃氏有限迴圈軌跡理論提出二階時延模式(不含零點)的鑑別方法,此法具有實際應用的困難,因為輸出量測的微小偏差即可造成錯誤的鑑別結果。
    本論文沿用埃氏有限迴圈軌跡理論來發展兩種較Kaya法更適合實際應用的鑑別方法。第一種方法以頻率加權的方式將軌跡理論產生之輸出方程式作積分處理,可處理鑑別實驗時靜態負載擾動存在的問題。第二種方法則利用輸出方程式進行多區域之面積積分並與量測結果作比較。除了二階不含零點模式之應用,此兩種方法亦被擴展至二階含零點模式之鑑別。經模擬研究與實驗印證,本文所提之兩種鑑別方法均較Kaya法更具有實用的價值。

    Identification techniques based on relay-induced limit cycles have found wide applications in the industry to acquire information about process dynamics. Kaya and Atherton (2001) proposed the use of the A-locus limit-cycle theory to identify second-order plus delay models (without zeros). However, their method is not feasible because slight variations in the output measurement could cause erroneous identification results.
    This thesis presents two identification methods based on the A-locus limit-cycle theory, which are superior to Kaya’s method in applications. The first method integrates the output equation obtained by the A-locus theory in a frequency-weighted manner, which can deal with the problem of static load disturbances. The second method utilizes the output equation to generate multiple area integrals, which are compared with the measured results. In addition to the application of second-order without zero models, the two methods are extended to identification of second-order with zero models. Extensive simulation study and an experimental work demonstrate that the proposed methods are indeed much more feasible than Kaya’s method.

    中文摘要 i 英文摘要 ii 誌謝 iii 表目錄 iv 圖目錄 vii 第一章 緒論 1 1.1 研究動機 1 1.2 文獻回顧 2 1.3 章節組織 8 第二章 現有之鑑別方法與缺點分析 10 2.1 Kaya方法的簡介 10 2.2 Kaya方法的模擬研究 13 2.2.1 模式應答曲線之建立 13 2.2.2 一、二階範例之鑑別結果 22 2.3 面積積分法與點對應法之應用 31 第三章 以埃氏理論為基之新鑑別法 36 3.1 鑑別法A之原理 37 3.1.1 無負載擾動之程序鑑別 37 3.1.2 存在負載擾動之程序鑑別 39 3.2 鑑別法B之原理 42 3.3 二階含零點時延程序之鑑別 43 第四章 模擬研究與討論 45 4.1 鑑別法A與Kaya方法之結果比較 45 4.2 鑑別法A、B之結果比較 48 4.3 外加雜訊存在時之鑑別結果 51 4.4 二階含零點時延模式之鑑別結果 60 4.5 存在靜態負載擾動之程序參數鑑別 69 4.6 模式簡化之應用 72 4.7 實例應用 79 第五章 結論與未來展望 82 5.1 結論 82 5.2 未來展望 84 參考文獻 I 附錄A、埃氏有限迴圈軌跡理論(A-Loucs Theory)公式之推導 III 附錄B、公式表(節錄於文獻) VI 附錄C、Kaya之公式推導 VIII 附錄D、鑑別法A公式之推導 XVIII

    [1]Atherton, D. P.; Stability of Nonlinear Systems, Research Student Press, (1981)

    [2]Åström, K. J. and T. Hägglund;“Automatic tuning of simple regulators with specifications on phase and amplitude margins,”Automatica, 20, 645 (1984)

    [3]Åström, K. J. and T. Hägglund; Automatic Tuning of PID Controllers, Instrument Society of America, Research Triangle Park, NC (1988)

    [4]Bi, Q. Q. Wang and C. C. Hang;“Relay-Based Estimation of Multiple Points on Process Frequency Response,”Automatica, 33, 1753 (1997)

    [5]Chang, R. C., S. H. Shen, and C. C. Yu;“Derivation of transfer functions from relay feedback systems,”Ind. Eng. Chem. Res., 31, 855 (1992)

    [6]Chung, J. K-C. and D. P. Atherton;“The determination of periodic modes in relay systems using the state space approach,”Int. J. Control 4, 105 (1966)

    [7]Friman, M. and K. V. Waller;“A Two-Channel Relay for Autotuning,”Ind. Eng. Chem. Res., 36, 2662 (1997)

    [8]Ham, T. W. and Y. H. Kim;“Process Identification Using Pulse Response and Proportional-Integral Derivative Controller Tuning with Combined Guidelines,”Ind. Eng. Chem. Res., 37, 482 (1998)

    [9]Hang, C. C. and K. J. Åström;“Practical Aspects of PID Auto-tuners Based on Relay Feedback,”Proc. Of IFAC Int. Symposium on Adaptive Control of Chemical Processes, pp. 153, Copenhagen, Denmark (1988)

    [10]Hang, C. C., K. J. Åström, and W. K. Ho;“Relay Auto-Tuning in the Presence of Static Load Disturbance,”Automatica, 29, 563 (1993)

    [11]Huang, H. P., C. L. Chen, G. B. Wang, and C. W. Lai;“Estimation
    of SOPDT Transfer Function Models Using an Auto-Tuning Test,”
    J. Chin. Inst. Chem. Engrs., 27, 153 (1996)

    [12]Huang, H. P. and C. L. Chen;“A New Approach to Identify Low Order Model for Process Having Single Unstable pole,”SAMS, 29,
    163 (1997a)

    [13]Huang, H. P. and C. L. Chen;“Auto-Tuning of PID Controllers for Second Order Unstable Process Having Dead Time,”J. Chem. Eng. Japan, 32, 486 (1999)

    [14]Hwang, S. H.;“Closed-Loop Automatic Tuning of Single-Input/
    Single-Output Systems,”Ind. Eng. Chem. Res., 34, 2406 (1995)

    [15]Kaya, I. and D. P. Atherton;“Parameter Estimation from Relay Autotuning with Asymmetric Limit Cycle Data,”J. Process Control, 11, 429 (2001)

    [16]Li, W., E. Eskinat, and W. L. Luyben;“An Improved Autotune Identification Method,”Ind. Eng. Chem. Res, 30, 1530 (1991)

    [17]Luyben, W. L.;“Derivation of transfer functions for highly nonlinear distillation columns,”Ind. Eng. Chem. Res, 26, 2490(1987)

    [18]Majhi, S. and D. P. Atherton;“Autotuning and Controller Design for Processes with Small Time Delays,”IEE Proc. Control Theory Appl., 146, 415 (1999)

    [19]Park, J. H., S. W. Sung, and I. B. Lee;“Improved Relay Auto-Tuning with Static Load Disturbance,”Automatica, 33, 711 (1997)

    [20]Scali, C., G. Marchetti, and D. Semino;“Relay with additional delay for identification and autotuning of completely unknown processes,”Ind. Eng. Chem. Res., 38, 1987 (1999)

    [21]Semino, D.;“Automatic Tuning of PID Controllers for Unstable Processes,”IFAC Advanced Control of Chemical Processes, pp. 321, Kyoto, Japan (1994)

    [22]Shen, S. H., J. S. Wu, and C. C. Yu;“Use of Biased-Relay Feedback for System Identification,”AICHE J., 42, 1174 (1996a)

    [23]Shen, S. H., J. S. Wu, and C. C. Yu;“Autotune Identification under Load Disturbance,”Ind. Eng. Chem. Res., 35, 1642 (1996b)

    [24]Shiu, S. J. and S. H. Hwang;“System identification using open-loop or closed-loop relay feedback,”Symposium on Computer Process Control, pp. 96, Taipi, ROC (1995)

    [25]Shiu, S. J., S. H. Hwang, and M. L. Lin;“Automatic Tuning of Systems with One or Two Unstable Poles,”Chem. Eng. Comm., 167, 51 (1998)

    [26]Wang, Q. G., C. C. Hang, and B. Zou;“Low order modeling from relay feedback systems,”Ind. Eng. Chem. Res., 36, 375 (1997)

    [27]Wang, Q. G., T. H. Lee, and K. K. Tan;“Relay-Tuned FSA Control for Unstable Processes with Deadtime,”Proceedings of ACC, pp. 311, Seattle, USA (1995)

    下載圖示
    2003-06-30公開
    QR CODE