簡易檢索 / 詳目顯示

研究生: 吳孟軒
Wu, Meng-Hsuan
論文名稱: 二氧化鉿薄膜於非揮發性記憶體之電阻轉換特性研究
Resistive Switching Behavior of HfO2 Nonvolatile Memory Device
指導教授: 王永和
Wang, Yeong-Her
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 86
中文關鍵詞: 電阻式轉換二氧化鉿氧空缺銦離子機制改變燈絲
外文關鍵詞: resistive switching, Hafnium oxide, oxygen vacancy, indium ion, transformation of resistive switching mechanism, filament
相關次數: 點閱:95下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗使用濺鍍的方式製備二氧化鉿薄膜做為電阻式記憶體之絕緣層材料。此二氧化鉿薄膜具有相當緻密與均勻的表面,其表面粗糙度可以達到0.33 nm。此外,本次實驗比較了兩種不同製程手法製作電阻式記憶體的元件,分別使用金屬遮罩以及曝光微影,並比較其電性,發現曝光維影後的元件的低阻態與高阻態的電流均明顯降低,低阻態電流由10 mA降低至 29 uA,阻值比由105提升至108 以上,功率消耗從12 mW降低至 12 uW。另外,其兩種不同製程手法的操作電壓的電極相反。
    本研究使用穿透式電子性顯微鏡探討其電阻轉換機制,發現在使用金屬遮罩製作的元件在低組態下,二氧化鉿絕緣層出現銦離子的成分,用曝光微影製作的元件則沒有此成分,在電流-溫度電性分析中,用金屬遮罩製作的元件在低組態下的電流會隨著溫度上升而下降,是為負溫度係數,表示此燈絲是金屬性的燈絲,反之,用曝光微影製作的元件在低電態電流則沒有與溫度有一定關係,由此兩種結果推測,電流降低與電壓極性改變是因為電阻轉換機制由銦離子遷移轉變為氧空缺所導致。

    Hafnium oxide thin film as insulator of Resistive Random Access Memory via sputter were prepared. We fabricated the device by shadow mask and photolithography. Compared with device fabricated by shadow mask, the device fabricated by photolithography demonstrated outstanding device parameters improvements, such as lower LRS current, lower power consumption, higher resistance ratio larger than 108. Furthermore, the polarity of operation voltage changed.
    We analyzed the composition in the HfO2 and utilized current – temperature measurement to discuss the transformation of the electrical properties between the different fabrications. Then we deduced the improvement of electrical properties and changes of polarity were attributes to the resistive switching mechanism dominated by In ions migration changed oxygen ions migration.

    摘要 I Abstract III 誌謝 V Contents VII Figure Captions XII Table Captions XVI Chapter 1 Introduction 1 1.1 Background 1 1.2 Motivation 2 1.3 Organization of Thesis 3 Chapter 2 Literature Survey 4 2.1 Introduction of non-volatile memory 4 2.2 Emerging non-volatile memory 5 2.2.1 Magnetic RAM (MRAM) 5 2.2.2 Ferroelectric RAM (FeRAM) 6 2.2.3 Phase Change RAM (PCRAM) 7 2.2.4 Resistive Random-Access RAM (RRAM) 8 2.3 Resistive RAM (RRAM) 9 2.3.1 Resistive switching phenomena 9 2.3.2 Storage media 10 2.3.3 Resistive switching mechanism 11 2.3.4 Carrier conduction mechanism 19 Chapter 3 Experiment 29 3.1 Fabrication equipment 29 3.1.1 Sputter ……………………………………………………………………29 3.1.2 Spin coater 29 3.1.3 Oven ……………………………………………………………………29 3.1.4 Mask Aligner 30 3.1.5 Co-sputtering system 30 3.2 Material analysis equipment 33 3.2.1 X-ray photoelectron spectroscopy (XPS) 33 3.2.2 X-ray diffraction (XRD) 33 3.2.3 Atomic force microscopy (AFM) 34 3.2.4 Transmission electron microscopy 35 3.3 Eletrical analysis equipment 36 3.3.1 Current-voltage (I-V) measurement 36 3.3.2 Retention characteristics 37 3.3.3 Endurance characteristics 37 3.4 Shadow-mask Al/HfO2/ITO RRAM device fabrication 37 3.4.1 Substrate cleaning 37 3.4.2 HfO2 storage media deposition 38 3.4.3 Top electrode deposition 39 3.5 Photolithography Al/HfO2/ITO RRAM device fabrication 41 3.5.1 Substrate cleaning 41 3.5.2 Bottom electrode deposition 42 3.5.3 HfO2 storage media deposition 42 3.5.4 Top electrode deposition 43 Chapter 4 Result and discussion 46 4.1 Material analysis of HfO2 films 46 4.1.1 X-ray Diffraction of HfO2 46 4.1.2 Thickness and Surface Morphology 46 4.1.3 Chemical compositional analysis 47 4.2 Electrical properties of HfO2-based RRAM device fabricated by using shadow-mask ………………………………………………………………………...51 4.2.1 Resistive switching properties of HfO2-based RRAM device with different top electrode metal 51 4.2.2 Conduction mechanism analysis 52 4.3 Electrical properties of HfO2-based RRAM device fabricated by using photolithography 56 4.3.1 Resistive switching properties of HfO2-based RRAM device 56 4.3.2 Current mechanism analysis 58 4.3.3 Uniformity 59 4.3.4 Endurance 60 4.3.5 Data retention 60 4.4 Resistive switching mechanism analysis 68 4.4.1 TEM observation 68 4.4.2 Current-Temperature Characteristics 69 4.4.3 Resistive switching model 70 4.5 Comparison 76 4.5.1 Comparison: Different area of the Al/HfO2/ITO devices 76 4.5.2 Comparison with other works 77 Chapter 5 Conclusion and Future Prospects 80 5.1 Conclusions 80 5.2 Future prospects 81 References 83

    [1] R. Waser, R. Dittmann, G. Staikov, and K. Szot, “Redox-based resistive switching memories –nanoionic mechanisms, prospects, and challenges,” Adv. Mater., vol. 21, pp. 2632–2663, Jul. 2009
    [2] B.J. Choi, A.C. Torrezan, K.J. Norris, F. Miao, J.P. Strachan, M.-X. Zhang, D.A.A. Ohlberg, N.P. Kobayashi, J.J. Yang, R.S. Williams, “Electrical Performance and Scalability of Pt Dispersed SiO2 Nanometallic Resistance Switch” Nano Lett. 13 (2013) 3213.
    [3] D. B. Strukov, G. S. Snider, D. R. Stewart, and R. S. Williams, "The missing memristor found," Nature, vol. 453, pp. 80-83, 05/01/print 2008.
    [4] R. Jiang, Z. Han, and X. Du, "Reliability/Uniformity improvement induced by an ultrathin TiO2 insertion in Ti/HfO2/Pt resistive switching memories," Microelectronics Reliability, vol. 63, pp. 37-41, 2016/08/01/ 2016.
    [5] S. Yu, B. Gao, a H. Dai, B. Sun, L. Liu, X. Liu, R. Han, J. Kang, and B.Yu, “Improved Uniformity of Resistive Switching Behaviors in HfO2 Thin Films with Embedded Al Layers” Electrochemical and Solid-State Letters, 13 (2) H36-H38 (2010)
    [6] H. Xie, Q. Liu, Y. Li, H. Lv, M. Wang, X. Liu, et al., "Nitrogen-induced improvement of resistive switching uniformity in a HfO2-based RRAM device," Semiconductor Science and Technology, vol. 27, p. 125008, 2012.
    [7] R. Ditizio, P. Werbaneth, and J.-G. Zhu, "Cell Shape and Patterning Considerations for Magnetic Random Access Memory (MRAM) Fabrication," 2008.
    [8] http://archive.eettaiwan.com/www.eettaiwan.com/ART_8800622969_628626_TA_24dbd3d4.HTM
    [9] Y. J. Song, G. Jeong, I. G. Baek, and J. Choi, “What Lies Ahead for Resistance-Based Memory Technologies?,” IEEE Computer, vol. 46, no. 8, pp. 30-36, Aug. 2013
    [10] H. S. P. Wong, H. Y. Lee, S. Yu, Y. S. Chen, Y. Wu, P. S. Chen, B. Lee, F. T. Chen, and M. J. Tsai, “Metal–oxide RRAM,” Proc. IEEE, vol. 100, no. 6, Jun. 2012.
    [11] F. Pan, S. Gao, C. Chen, C. Song, and F. Zeng, “Recent progress in resistive random access memories: Materials, switching mechanisms, and performance,” Mater. Sci. Eng., vol. 83, pp. 1–59, Sep. 2014.
    [12] J.Y. Son, Y.H. Shin, H. Kim, H.M.” NiO Resistive Random Access Memory Nanocapacitor Array on Graphene” Jang, ACS Nano 4 (2010) 2655.
    [13] C. T. Antonio, S. John Paul, M.-R. Gilberto, and R. S. Williams, "Sub-nanosecond switching of a tantalum oxide memristor," Nanotechnology, vol. 22, p. 485203, 2011.
    [14] X.T. Zhang, Q.X. Yu, Y.P. Yao, X.G. Li, “Ultrafast resistive switching in SrTiO3:NbSrTiO3:Nb single crystal” Appl. Phys. Lett. 97 (2010) 222117.
    [15] M. Hasan, R. Dong, H. Choi, D. Lee, D.-J. Seong, M. Pyun, H. Hwang, “Uniform resistive switching with a thin reactive metal interface layer in metal- La0.7Ca0.3MnO3-metal heterostructures” Appl. Phys. Lett.92 (2008) 202102.
    [16] L. Liu, S. Zhang, Y. Luo, G. Yuan, J. Liu, J. Yin, Z. Liu, J.” Coexistence of unipolar and bipolar resistive switching in BiFeO3 and Bi0.8Ca0.2FeO3 films” Appl. Phys. 111 (2012) 104103.
    [17] W. Bai, R. Huang, Y. Cai, Y. Tang, X. Zhang, and Y. Wang, "Record Low-Power Organic RRAM With Sub-20-nA Reset Current," IEEE Electron Device Letters, vol. 34, pp. 223-225, 2013
    [18] A. Sawa, “Resistive switching in transition metal oxides,” Mater. Today, vol. 11, pp. 28-36, 2008.
    [19] http://www.eetimes.com/document.asp?doc_id=1279727&page_number=1
    [20] D. H. Kwon, K. M. Kim, J. H. Jang, J. M. Jeon, M. H. Lee, G. H. Kim, X. S. Li, G. S. Park, B. Lee, S. Han, M. Kim, and C. S. Hwang, “Atomic structure of conducting nanofilaments in TiO2 resistive switching memory,” Nature Nanotech., vol. 5, pp. 148–153, Feb. 2010.
    [21] V. Ilia and N. K. Michael, "Cation-based resistance change memory," Journal of Physics D: Applied Physics, vol. 46, p. 074005, 2013.
    [22] Y. Yang, Y. Q. Wang, G. Chen, "Roll Eccentricity Extraction Method Based on Comprehensive Signal Processing", Applied Mechanics and Materials, Vols. 184-185, pp. 732-737, 2012
    [23] J.-Y. Chen, C.-L. Hsin, C.-W. Huang, C.-H. Chiu, Y.-T. Huang, S.-J. Lin, W.-W. Wu,” Dynamic evolution of conducting nanofilament in resistive switching memories”and L.-J. Chen, Nano Lett., 2013, 13, 3671–3677.
    [24] M. T. Wang, S. Y. Deng, T. H. Wang, B. Cheng, and J. Y. m. Lee, “The ohmic conduction mechanism in high-dielectric-constant ZrO2 thin films,” J. Electrochem. Soc., vol. 152, pp. G542–G544, 2005
    [25] F. C. Chiu, “A Review on Conduction Mechanisms in Dielectric Films,” Adv Mater Sci Eng., 2014
    [26] http://cmnst.ncku.edu.tw/files/11-1023-13238.php
    [27] http://www.toray.cn/trc/kinougenri/kouzou/kou_006.html
    [28] Transmission electron microscopy, https://en.wikipedia.org/wiki/Transmission_electron_microscopy#/media/File:Scheme_TEM_en.svg
    [29] M. Netrvalova, V. Vavrunkova, J. Mullerova, and P. Sutta, “OPTICAL PROPERTIES OF RE-CRYSTALLIZED POLYCRYSTALLINE SILICON THIN FILMS FROM a-Si FILMS DEPOSITED BY ELECTRON BEAM EVAPORATION,” J. Electr. Eng.: Elektrotechnicky Cas., vol. 60, no. 5, pp. 279-282, Sep. 2009
    [30] L. Chang, C. Eng Fong, and T. Leng Seow, "Enhanced device performance of AlGaN/GaN HEMTs using HfO2 high- k dielectric for surface passivation and gate oxide," Semiconductor Science and Technology, vol. 22, p. 522, 2007
    [31] T. M. Tsai, K. C. Chang, T. C. Chang, R. Zhang, T. Wang, C. H. Pan, K. H. Chen, H. M. Chen, M. C. Chen, Y. T. Tseng, P. H. Chen, I. Lo, J. C. Zheng, J. C. Lou, and Simon M. Sze, “Resistive Switching Mechanism of Oxygen-Rich Indium Tin Oxide Resistance Random Access Memory,” IEEE Electron Device Letters., vol. 37, pp. 408-411, Apr. 2016.
    [32] W. Kim, S. I. Park, Z. Zhang, and S. Wong, “Current Conduction Mechanism of Nitrogen-Doped AlOx RRAM,” IEEE Electron Device Letters., vol. 61, pp. 2158-2163, Jun. 2014.
    [33] Z.H. Lin and Y.H. Wang, " Observation of indium ion migration-induced resistive switching in Al/Mg0.5Ca0.5TiO3/ITO," Applied Physics Letters, vol. 109, p. 053507, 2016/08/01 2016
    [34] W. B. Nottingham, "Thermionic Emission from Tungsten and Thoriated Tungsten Filaments," Physical Review, vol. 49, pp. 78-97, 01/01/ 1936.
    [35] K.L. Lin, T.H. Hou, J. Shieh, J.H. Lin, C.T. Chou, and Y.-J. Lee, "Electrode dependence of filament formation in HfO2 resistive-switching memory," Journal of Applied Physics, vol. 109, p. 084104, 2011/04/15 2011.
    [36] V.Sriraman , Z.Chen, X.Li, Xinpeng Wang, Navab Singh , G. Lo ”HfO2 Based Resistive Switching Non-Volatile Memory (RRAM) and Its Potential for Embedded Applications” IPCSIT vol. 32 (2012)
    [37] T. L. Tsai, H. Y. Chang, F. S. Jiang, and T. Y. Tseng,“Impact of Post-Oxide Deposition Annealing on Resistive Switching in HfO2-Based Oxide RRAM and Conductive-Bridge RAM Devices,” IEEE Electron Device Letters., vol. 36, pp. 1146-1148, Nov. 2015
    [38] D. S. Jeon, J. H. Park, M. J. Kim, and T. G. Kim, "Low power NiN-based resistive switching memory device using Ti doping," Applied Physics Letters, vol. 109, p. 183507, 2016/10/31 2016.
    [39] T.L. Tsai, H.Y. Chang, J. J.C. Lou, and T.-Y. Tseng, "A high performance transparent resistive switching memory made from ZrO2/AlON bilayer structure," Applied Physics Letters, vol. 108, p. 153505, 2016/04/11 2016.
    [40] W. Zhang, J.Z. Kong, Z.Y. Cao, A.D. Li, L.G. Wang, L. Zhu, et al., "Bipolar Resistive Switching Characteristics of HfO2/TiO2/HfO2 Trilayer-Structure RRAM Devices on Pt and TiN-Coated Substrates Fabricated by Atomic Layer Deposition," Nanoscale Research Letters, vol. 12, p. 393, 2017.
    [41] S. K. Nandi, X. Liu, D. K. Venkatachalam, and R. G. Elliman, "Self-assembly of an NbO2 interlayer and configurable resistive switching in Pt/Nb/HfO2/Pt structures," Applied Physics Letters, vol. 107, p. 132901, 2015.

    無法下載圖示 校內:立即公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE