簡易檢索 / 詳目顯示

研究生: 黃竣謙
Huang, Chun-Chien
論文名稱: 混凝土填充鋼管柱接頭之耐震性能研究
Seismic Performance of Concrete-Filled Steel Tubular Column Connections
指導教授: 賴啟銘
Lai, Chi-Ming
共同指導教授: 張惠雲
Chang, Heui-Yung
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 106
中文關鍵詞: 鋼柱接頭空心鋼管柱混凝土填充鋼管柱BCP鋼管柱CFTC
外文關鍵詞: steel column connection, hollow steel tubular column, concrete-filled steel tubular column, BCP steel tubular column, CFTC
相關次數: 點閱:16下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於複合柱擁有優異的力學性能,且國內鋼管生產技術與設備的提升,混凝土填充鋼管柱將成為未來中高層建築的重點使用構材。因此,本研究將針對無填充混凝土鋼管柱與混凝土填充鋼管柱,透過有限元素模擬分析評估其耐震性能。具體而言,本研究先以較多人研究的箱型柱文獻做為有限元素分析的驗證,之後設計5支不同柱體進行模擬分析,包含2支空心鋼管柱與3支混凝土填充鋼管柱,進行固定軸壓下的反覆側向位移耐震試驗。
    本研究設計之柱體寬厚比數值皆較大,在AISC規範與國內鋼結構設計規範中,空心鋼管柱皆屬於細長肢材,模擬結果顯示,較大寬厚比的柱體在未填充混凝土的情況下,無法完成側位移4%的試驗,在試驗中途即出現嚴重局部挫屈並出現超出參數設定之奇異點,使分析發散無法收斂,而從遲滯迴圈中也可發現其強度已大幅下降至趨近於0。
    另一方面,混凝土填充鋼管柱不僅可完成層間變位角4%之試驗,且兩個迴圈完成時柱體強度仍可超過標稱彎矩的80%,符合鋼結構設計規範耐震要求,而鋼管的厚度會大幅影響遲滯迴圈的飽滿程度,厚度較小的鋼管雖有足夠的強度,但與較厚的鋼管相比遲滯迴圈卻消瘦許多。在局部挫屈方面,混凝土的填充可有效防止鋼管產生局部挫屈,且有了混凝土做內部支撐,產生局部挫屈的位置也發生改變,使其發生處更靠近柱端。

    Concrete-filled steel tubular columns (CFTC) combine the strengths of steel and concrete, offering excellent mechanical performance. With advancements in domestic steel tube manufacturing, CFTCs are expected to become key components in mid- to high-rise buildings. This study investigates the seismic behavior of hollow steel tubular columns and CFTCs through finite element analysis. A validated box-section model was used first, followed by simulations of five column specimens—two hollow and three filled—under constant axial load and cyclic lateral displacement.
    All specimens had large width-to-thickness ratios, classifying the hollow tubes as slender members. The analysis showed that without concrete, the hollow columns failed before reaching 4% drift, exhibiting severe local buckling and convergence issues. In contrast, the CFTCs completed the tests with residual strength exceeding 80% of nominal capacity, meeting seismic code requirements. Tube thickness influenced the hysteresis loop shape, and concrete infill helped prevent and shift local buckling locations.

    第一章 緒論 1 1.1研究背景 1 1.2研究動機與目的 2 1.3研究方法 3 1.4論文內容 4 第二章 文獻回顧 5 第三章 有限元素模型建置與驗證 10 3.1有限元素分析 10 3.2行為指標 10 3.3案例模型 11 3.3.1 模型尺寸設定與假設 11 3.3.2 材料參數 12 3.3.3 元素與網格劃分 12 3.3.4 網格評估 12 3.3.5 接觸設定 14 3.3.6 邊界條件設定 14 3.4模擬結果 15 3.4.1 彎矩-層間變位角 15 3.4.2 von Mises應力 16 3.4.3 PEEQ等效塑性應變 16 3.5結果與討論 17 第四章 混凝土填充柱受力行為分析 28 4.1前言 28 4.2設計規範 28 4.2.1 寬厚比限制 28 4.2.2 設計軸力強度 31 4.2.3 標稱彎矩強度 32 4.2.4 軸力彎矩互制曲線 35 4.3案例模型 36 4.3.1 模型尺寸設定 36 4.3.2 材料參數 36 4.3.3 元素與網格劃分 37 4.3.4 網格評估 38 4.3.5 接觸設定 39 4.3.6 邊界條件設定 39 4.4模擬結果 40 4.4.1 彎矩-層間變位角 40 4.4.2 von Mises應力 43 4.4.2 PEEQ等效塑性應變 45 4.5比較與討論 47 第五章 結論與建議 88 5.1結論 88 5.2建議 89 參考文獻 90

    1. Chou, C., & Wu, S. (2019). Cyclic Lateral Load Test and Finite Element Analysis of High-Strength Concrete Filled Steel Box Columns under High Axial Compression.Engineering Structures, 189, 89–99.
    2. Chen, C., Lin, S., & Wu, P. (2016). Seismic Performance of Large BCR Steel Columns. Structural Engineering, 31(4), 39–58.
    3. Tang, hongyuan, Wang, H., Liu, Y., Sun, X., & Huang, X. (2023). Behaviour of CFRP Confined Square Concrete-Filled Stainless Steel Tubular Columns under Uni-Axial Compression. Thin-WalledStructures, 183, 110440.
    4. Fujimoto, T., Mukai, A., Nishiyama, isao, & Sakino, K. (2004). Behavior of Eccentrically Loaded Concrete-Filled Steel Tubular Columns. Journal of Structural Engineering, 130(2), 203–212.
    5. Judd, J. p, & Pakwan, N. (2018). Seismic Performance of Steel Moment Frame Office Buildings with Square Concrete-Filled Steel Tube Gravity Columns. Engineering Structures, 172, 41–54.
    6. Qu, X., Chen, Z., Nethercot, D. a, Gardner, leroy , & Theofanous, M. (2013). Load-Reversed Push-out Tests on Rectangular CFST Columns. Journal of Constructional Steel Research, 81, 35–43.
    7. Rabbat, b. g., Asce , M., & Russell, H. g. (1985). Friction Coefficient of Steel on Concrete or Grout. Journal of Structural Engineering, 111(3), 505–515.
    8. Han, L., Yao, G., & Tao, Z. (2007). Performance of Concrete-Filled Thin-Walled Steel Tubes under Pure Torsion. Thin-Walled Structures, 45, 24–36.
    9. Lamport, W. b, Jirsa, J. o, & Yura, J. a. (1991). Strength and Behavior of Grouted Pile-To-Sleeve Connections. Journal of Structural Engineering, 117(8), 2477–2498.
    10. Anderson, P. (2008). Concentration of Plastic Strains in Steel Liners Due to Concrete Cracks in the Containment Wall. International Journal of Pressure Vessels and Piping, 85(10), 711–719.

    11. Yamakawa, T., Javadi, P., Maeda, K., & Kobayashi, M. (2010). CAPACITY-BASED ANALYTICAL EVALUATIONS OF RETROFITTED RC FRAMES-A new hybrid connection for installation of a steel braced frame inside a RC frame(Part 2)-. Journal of Structural and Construction Engineering, 75(651), 987-995.
    12. Aghdamy, S., Thambiratnam, D. P., Dhanasekar, M., & Saiedi, S. (2015). Computer analysis of impact behavior of concrete filled steel tube columns. Advances in Engineering Software, 89, 52-63.
    13. Kanishchev, R. A. (2016). Analysis of local stability of the rectangular tubes filled with concrete. Magazine of Civil Engineering, (4 (64)), 59-68.
    14. Zhou, X. H., Gan, D., Liu, J. P., & Chen, Y. F. (2018). Composite effect of stub square steel tubed columns under axial compression. Advanced Steel Construction, 14(2), 274-290.
    15. Ouyang, Y., & Kwan, A. K. H. (2018). Use of analytical lateral-axial strain relation in FE analysis of axially loaded rectangular CFST columns. Engineering Structures, 166, 142-151.
    16. Peng, Z., Dai, S. B., Pi, Y. L., Zhang, Y. C., & Huang, J. (2018). Seismic performance of end-plate connections between T-shaped CFST columns and RC beams. Journal of Constructional Steel Research, 145, 167-183.
    17. Kanishchev, R., & Kvočák, V. (2016). Local buckling of rectangular steel tubes filled with concrete. In Advances and Trends in Engineering Sciences and Technologies II (pp. 159-164). CRC Press.
    18. Ding, C., Pan, X., Bai, Y., & Shi, G. (2019). Prefabricated connection for steel beam and concrete-filled steel tube column. Journal of Constructional Steel Research, 162, 105751.
    19. Li, G., Yang, Y., Yang, Z., Fang, C., Ge, H., & Liu, Y. (2021). Mechanical behavior of high-strength concrete filled high-strength steel tubular stub columns stiffened with encased I-shaped CFRP profile under axial compression. Composite Structures, 275, 114504.
    20. Wang, Z., Liu, Z., & Zhou, X. (2022). Experimental investigation of special-shaped concrete-filled square steel tube composite columns with steel hoops under axial loads. Materials, 15(12), 4179.
    21. Li, X., Zhang, S., Lu, W., & Li, J. (2022). Axial compressive behavior of steel-tube-confined concrete-filled-steel-tubes. Thin-Walled Structures, 181, 110138.
    22. Wu, N., & Tan, K. H. (2023). Testing, modelling and design of concentrically-loaded concrete-encased concrete-filled steel tube slender column. Journal of Constructional Steel Research, 203, 107810.
    23. Cho, Y., Wang, F., Seo, S. Y., Lee, K., & Kim, T. (2024). Experimental and numerical investigation of through-diaphragm in H-shaped steel beam to CFST column connections. Thin-Walled Structures, 199, 111852.
    24. AISC. (2022a). Seismic provisions for structural steel buildings. ANSI/AISC 341-22. American Institute of Steel Construction, Chicago, Illinois.
    25. AISC. (2022b). Specification for structural steel buildings. ANSI/AISC 360-22. American Institute of Steel Construction, Chicago, Illinois.
    26. 內政部營建署「鋼結構極限設計法規範及解說」,2010。
    27. 內政部營建署「鋼骨鋼筋混凝土構造設計規範與解說」,2011。
    28. 黃國倫 (2020),「老舊RC建築高軸力非韌性配筋矩形柱乾式鋼板補強之研究」,內政部建築研究所自行研究報告。
    29. 陳冠維 (2019),「高強度鋼箱型柱之耐震試驗與背骨曲線發展」,碩士論文, 國立台灣大學土木工程研究所。
    30. 賴品蓁 (2023),「塗佈水性防火漆之鋼梁柱接頭防火安全研究」,碩士論文, 國立成功大學土木工程研究所。

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE