| 研究生: |
周茗蕙 Chou, Ming-Hui |
|---|---|
| 論文名稱: |
以高分子固定溶致型液晶光子晶體結構之研究 Fixing of Lyotropic Cholesteric Liquid Crystalline Photonic Constructions via Predesigned Polymer Matrixes |
| 指導教授: |
劉瑞祥
Liu, Jui-Hsiang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 英文 |
| 論文頁數: | 74 |
| 中文關鍵詞: | 可調式結構色 、溶致型膽固醇液晶 、布拉格反射 、液晶水膠複合材料 、壓力感測器 |
| 外文關鍵詞: | Tunable structural color, Lyotropic cholesteric liquid crystal, Bragg reflection, Liquid crystal hydrogels, Stress sensor |
| 相關次數: | 點閱:30 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
自然界中有豐富的結構色,一些生物在外界刺激下會改變其呈色結構。在此項研究中,以溶致型膽固醇液晶模擬生物的結構色變化。膽固醇液晶為一種一維光子晶體,具有獨特的螺旋結構,並呈現布拉格反射,反射特定波長的光。本實驗將具有手性的高分子羥丙基纖維素(HPC)以適當濃度溶解在溶劑中,並透過自組裝形成溶致型膽固醇液晶相,以呈現特定顏色。透過調整HPC的含量,可影響膽固醇液晶的螺距,並反射不同波段的光。為了穩定膽固醇液晶相,本研究設計了一個帶有戊二醛(GA)交聯劑的水膠聚合物網狀結構。所合成的高分子穩定化液晶水膠表現出明顯的抗壓性,並可在外部刺激下表現出顏色變化,如伸長、壓縮和彎曲。這種現象歸因於螺旋結構的可逆性變化。值得注意的是,當HPC在水中並處於液晶相時會顯示顏色。然而,在乾燥後將會變為無色。相反地,本研究所合成的高分子穩定化液晶水膠,在乾燥後仍然保留彩色的外觀。這些結果歸因於,水膠網狀結構的穩定和戊二醛的交聯作用。此結果表明,透過高分子網狀結構和交聯劑,可固定溶致型膽固醇液晶的螺旋結構。這種製造穩定結構色的新技能,拓展了結構色在功能性材料上的應用。
In this study, a series of lyotropic cholesteric liquid crystals was synthesized and investigated to simulate the color variation of biological systems. Cholesteric liquid crystal is a kind of one-dimensional photonic crystal with a unique helical structure exhibiting Bragg reflection. The chiral polymer hydroxypropyl cellulose (HPC) was dissolved in a solvent at an appropriate concentration, and the cholesteric phase was formed by selfassembly. Adjusting the content of HPC reflects the incident light in different wavelengths. To stabilize the color constructions, a polymer network of hydrogel with glutaraldehyde (GA) crosslinking agent was designed. The synthesized crosslinked lyotropic liquid crystal hydrogels show significant pressure resistance and exhibit color variation by external stimulation such as elongation and compression. This phenomenon is ascribed to the reversible change of the helix construction. It is noteworthy that HPC shows colors in water when it's in the lyotropic phase. However, after drying, it becomes colorless. Oppositely, the synthesized HPC xerogel stabilized by the predesigned polymer matrixes still shows colorful appearance. The results are ascribed to the stabilization of the hydrogel matrixes and the glutaraldehyde crosslinking effect. The results indicate that the helical construction of lyotropic liquid crystals was fixed via the predesign of coexisting polymer matrixes and crosslinking agents. This skill to produce stable xerogel structure colors broadens the application of structure colors on functional materials.
1. Dumanli, A. G.; Savin, T., Recent advances in the biomimicry of structural colours. Chemical Society Reviews 2016, 45 (24), 6698-6724.
2. Mills, A.; Hawthorne, D.; Burns, L.; Hazafy, D., Novel temperature-activated humidity-sensitive optical sensor. Sensors and Actuators B: Chemical 2017, 240, 1009-1015.
3. Yi, H.; Lee, S. H.; Ko, H.; Lee, D.; Bae, W. G.; Kim, T. i.; Hwang, D. S.; Jeong, H. E., Ultra‐Adaptable and Wearable Photonic Skin Based on a Shape‐Memory, Responsive Cellulose Derivative. Advanced Functional Materials 2019, 29 (34), 1902720.
4. Yi, H.; Lee, S.-H.; Kim, D.; Jeong, H. E.; Jeong, C., Colorimetric Sensor Based on Hydroxypropyl Cellulose for Wide Temperature Sensing Range. Sensors 2022, 22 (3), 886.
5. Kato, T.; Hirai, Y.; Nakaso, S.; Moriyama, M., Liquid-crystalline physical gels. Chemical Society Reviews 2007, 36 (12), 1857-1867.
6. Reinitzer, F., Contributions to the knowledge of cholesterol. Liquid Crystals 1989, 5 (1), 7-18.
7. Lehmann, O., Über fliessende krystalle. Zeitschrift für physikalische Chemie 1889, 4 (1), 462-472.
8. Lehmann, O., Zur geschichte der flüssigen kristalle. Annalen der Physik 1908, 330 (5), 852-860.
9. Lehmann, O., Bemerkungen zu Fr. Reinitzers Mitteilung über die Geschichte der flüssigen Kristalle. Annalen der Physik 1908, 332 (15), 1099-1102.
10. Giese, M.; Blusch, L. K.; Khan, M. K.; MacLachlan, M. J., Functional materials from cellulose‐derived liquid‐crystal templates. Angewandte Chemie International Edition 2015, 54 (10), 2888-2910.
11. Brown, G. H., Structure, properties, and some applications of liquid crystals. JOSA 1973, 63 (12), 1505-1514.
12. Goodby, J. W., "Materials and Phase Structures of Calamitic and Discotic Liquid Crystals”. Handbook of Visual Display Technology 2016, p. 1845-1895.
13. Axenov, K. V.; Laschat, S., Thermotropic ionic liquid crystals. Materials 2011, 4 (1), 206-259.
14. Abberley, J. P.; Killah, R.; Walker, R.; Storey, J.; Imrie, C. T.; Salamończyk, M.; Zhu, C.; Gorecka, E.; Pociecha, D., Heliconical smectic phases formed by achiral molecules. Nature communications 2018, 9 (1), 1-7.
15. Govindaiah, T., Electro-optical and thermodynamic studies on induced reentrant smectic-a phase in binary mixture of liquid crystalline materials. Chem. Technol. Ind. J. 2016, 11, 106.
16. Kim, Y.; Tamaoki, N., Photoresponsive Chiral Dopants: Light‐Driven Helicity Manipulation in Cholesteric Liquid Crystals for Optical and Mechanical Functions. ChemPhotoChem 2019, 3 (6), 284-303.
17. Mulder, D.; Schenning, A.; Bastiaansen, C., Chiral-nematic liquid crystals as one dimensional photonic materials in optical sensors. Journal of Materials Chemistry C 2014, 2 (33), 6695-6705.
18. Stephen, M. J.; Straley, J. P., Physics of liquid crystals. Reviews of Modern Physics 1974, 46 (4), 617.
19. Lombardo, D.; Kiselev, M. A.; Magazù, S.; Calandra, P., Amphiphiles self-assembly: basic concepts and future perspectives of supramolecular approaches. Advances in Condensed Matter Physics 2015, 2015.
20. Fong, C.; Le, T.; Drummond, C. J., Lyotropic liquid crystal engineering–ordered nanostructured small molecule amphiphile self-assembly materials by design. Chemical Society Reviews 2012, 41 (3), 1297-1322.
21. Salim, M.; Minamikawa, H.; Sugimura, A.; Hashim, R., Amphiphilic designer nano-carriers for controlled release: from drug delivery to diagnostics. MedChemComm 2014, 5 (11), 1602-1618.
22. Collings, P. J.; Hird, M.; Tschierske, C., Introduction to Liquid Crystals. Chemistry and Physics. Angewandte Chemie-English Edition 1997, 36 (18), 2017-2017.
23. Kumar, S.; Brock, J., Liquid crystals: experimental study of physical properties and phase transitions. Cambridge University Press: 2001.
24. Khoo, I.-C.; Wu, S.-T., Optics and nonlinear optics of liquid crystals. world scientific: 1993; Vol. 1.
25. De Gennes, P.-G.; Prost, J., The physics of liquid crystals. Oxford university press: 1993.
26. Sun, J.; Bhushan, B.; Tong, J., Structural coloration in nature. Rsc Advances 2013, 3 (35), 14862-14889.
27. Wang, H.; Zhang, K.-Q., Photonic crystal structures with tunable structure color as colorimetric sensors. Sensors 2013, 13 (4), 4192-4213.
28. Yue, Y.; Gong, J. P., Tunable one-dimensional photonic crystals from soft materials. Journal of Photochemistry and Photobiology C: Photochemistry Reviews 2015, 23, 45-67.
29. Dalmis, R.; Keskin, O. Y.; Azem, N. F. A.; Birlik, I., A new one-dimensional photonic crystal combination of TiO2/CuO for structural color applications. Ceramics International 2019, 45 (17), 21333-21340.
30. Gao, X.; Yan, X.; Yao, X.; Xu, L.; Zhang, K.; Zhang, J.; Yang, B.; Jiang, L., The dry‐style antifogging properties of mosquito compound eyes and artificial analogues prepared by soft lithography. Advanced Materials 2007, 19 (17), 2213-2217.
31. Baker, J. E.; Sriram, R.; Miller, B. L., Two-dimensional photonic crystals for sensitive microscale chemical and biochemical sensing. Lab on a Chip 2015, 15 (4), 971-990.
32. Lourtioz, J.-M.; Benisty, H.; Berger, V.; Gerard, J.-M.; Maystre, D.; Tchelnokov, A., Photonic crystals. Towards Nanoscale Photonic Devices 2005.
33. Mathger, L.; Land, M.; Siebeck, U.; Marshall, N., Rapid colour changes in multilayer reflecting stripes in the paradise whiptail, Pentapodus paradiseus. Journal of Experimental Biology 2003, 206 (20), 3607-3613.
34. Li, K.; Li, C.; Li, H.; Li, M.; Song, Y., Designable structural coloration by colloidal particle assembly: from nature to artificial manufacturing. iScience 2021, 24 (2), 102121.
35. Fu, Y.; Tippets, C. A.; Donev, E. U.; Lopez, R., Structural colors: from natural to artificial systems. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology 2016, 8 (5), 758-775.
36. Palffy-Muhoray, P., Liquid crystals New designs in cholesteric colour. Nature 1998, 391 (6669), 745-746.
37. Habibi, Y.; Lucia, L. A.; Rojas, O. J., Cellulose nanocrystals: chemistry, self-assembly, and applications. Chemical Reviews 2010, 110 (6), 3479-3500.
38. Zhu, B.; Merindol, R.; Benitez, A. J.; Wang, B.; Walther, A., Supramolecular engineering of hierarchically self-assembled, bioinspired, cholesteric nanocomposites formed by cellulose nanocrystals and polymers. ACS Applied Materials & Interfaces 2016, 8 (17), 11031-11040.
39. Chami Khazraji, A.; Robert, S., Self-assembly and intermolecular forces when cellulose and water interact using molecular modeling. Journal of Nanomaterials 2013, 2013, 1-12.
40. He, X.; Lu, W.; Sun, C.; Khalesi, H.; Mata, A.; Andaleeb, R.; Fang, Y., Cellulose and cellulose derivatives: Different colloidal states and food-related applications. Carbohydrate Polymers 2021, 255, 117334.
41. Miyagi, K.; Teramoto, Y., Construction of Functional Materials in Various Material Forms from Cellulosic Cholesteric Liquid Crystals. Nanomaterials 2021, 11 (11), 2969.
42. Fleming, K.; Gray, D. G.; Matthews, S., Cellulose crystallites. Chemistry–A European Journal 2001, 7 (9), 1831-1836.
43. Tseng, S.-L.; Valente, A.; Gray, D. G., Cholesteric liquid crystalline phases based on (acetoxypropyl) cellulose. Macromolecules 1981, 14 (3), 715-719.
44. Werbowyj, R. S.; Gray, D. G., Optical properties of hydroxypropyl cellulose liquid crystals. I. Cholesteric pitch and polymer concentration. Macromolecules 1984, 17 (8), 1512-1520.
45. Tran, A.; Boott, C. E.; MacLachlan, M. J., Understanding the Self‐Assembly of Cellulose Nanocrystals—Toward Chiral Photonic Materials. Advanced Materials 2020, 32 (41), 1905876.
46. Chan, C. L. C.; Bay, M. M.; Jacucci, G.; Vadrucci, R.; Williams, C. A.; van de Kerkhof, G. T.; Parker, R. M.; Vynck, K.; Frka‐Petesic, B.; Vignolini, S., Visual Appearance of Chiral Nematic Cellulose‐Based Photonic Films: Angular and Polarization Independent Color Response with a Twist. Advanced Materials 2019, 31 (52), 1905151.
47. Tixier, T.; Heppenstall-Butler, M.; Terentjev, E., Stability of cellulose lyotropic liquid crystal emulsions. The European Physical Journal E 2005, 18 (4), 417-423.
48. Aswathy, S.; Narendrakumar, U.; Manjubala, I., Commercial hydrogels for biomedical applications. Heliyon 2020, 6 (4), e03719.
49. Ullah, F.; Othman, M. B. H.; Javed, F.; Ahmad, Z.; Akil, H. M., Classification, processing and application of hydrogels: A review. Materials Science and Engineering: C 2015, 57, 414-433.
50. Ding, M.; Jing, L.; Yang, H.; Machnicki, C.; Fu, X.; Li, K.; Wong, I.; Chen, P.-Y., Multifunctional soft machines based on stimuli-responsive hydrogels: from freestanding hydrogels to smart integrated systems. Materials Today Advances 2020, 8, 100088.
51. Sun, X.; Agate, S.; Salem, K. S.; Lucia, L.; Pal, L., Hydrogel-based sensor networks: Compositions, properties, and applications—A review. ACS Applied Bio Materials 2020, 4 (1), 140-162.
52. Shin, J.; Han, S. G.; Lee, W., Dually tunable inverse opal hydrogel colorimetric sensor with fast and reversible color changes. Sensors and Actuators B: Chemical 2012, 168, 20-26.
53. Fu, F.; Chen, Z.; Zhao, Z.; Wang, H.; Shang, L.; Gu, Z.; Zhao, Y., Bio-inspired self-healing structural color hydrogel. Proceedings of the National Academy of Sciences 2017, 114 (23), 5900-5905.
54. Chou, H.-H.; Nguyen, A.; Chortos, A.; To, J. W.; Lu, C.; Mei, J.; Kurosawa, T.; Bae, W.-G.; Tok, J. B.-H.; Bao, Z., A chameleon-inspired stretchable electronic skin with interactive colour changing controlled by tactile sensing. Nature communications 2015, 6 (1), 1-10.
55. Fu, F.; Shang, L.; Chen, Z.; Yu, Y.; Zhao, Y., Bioinspired living structural color hydrogels. Science Robotics 2018, 3 (16), eaar8580.
56. Yue, Y.; Kurokawa, T.; Haque, M. A.; Nakajima, T.; Nonoyama, T.; Li, X.; Kajiwara, I.; Gong, J. P., Mechano-actuated ultrafast full-colour switching in layered photonic hydrogels. Nature communications 2014, 5 (1), 1-8.
57. Stumpel, J. E.; Gil, E. R.; Spoelstra, A. B.; Bastiaansen, C. W.; Broer, D. J.; Schenning, A. P., Stimuli‐responsive materials based on interpenetrating polymer liquid crystal hydrogels. Advanced Functional Materials 2015, 25 (22), 3314-3320.
58. Zhang, Z.; Chen, Z.; Wang, Y.; Zhao, Y., Bioinspired conductive cellulose liquid-crystal hydrogels as multifunctional electrical skins. Proceedings of the National Academy of Sciences 2020, 117 (31), 18310-18316.