| 研究生: |
郭名鈞 Kuo, Ming-Chun |
|---|---|
| 論文名稱: |
數據化奇異LQ設計之超高精確度運算 Data-based singular LQ designs using ultra-precision arithmetic |
| 指導教授: |
陳正宗
Chan, Jeng-Tzong |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 52 |
| 中文關鍵詞: | 數據化最佳化設計 、線性二次式 、奇異 、超高精確度 |
| 外文關鍵詞: | linear quadratic, data-based linear quadratic, ultra-precision, singular |
| 相關次數: | 點閱:149 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
線性二次式(LQ)最佳化是一個常運用於控制系統中的方法,線性二次式可以在系統的轉移函數不知道的情況下,使用開路的測試數據進行最佳化設計,使設計更為簡單。另一方面,一個非零的輸入權重,會造成輸出的誤差,為了要達到完美指令跟隨,線性二次式控制設計必須把輸入權重拿掉。然而在拿掉輸入權重後,計算數據化最佳化設計(DBLQ)時,會造成資訊矩陣接近奇異,使運算結果有很大的誤差,對於這個問題,本研究使用超高精確度解決數值困難的問題,超高精確度提供更高的精確度和更大的運算空間。
The linear quadratic (LQ) optimization is a known approach for control system synthesis. In addition, a LQ control design can also be conducted based sorely on the open-loop plant test data, when a plant dynamic model is not explicitly known. On the other hand, the presence of a nonzero penalty on the control input causes an error to appear in the closed-loop output. In order to achieve a perfect command following operation, a LQ control design must be performed without penalizing the control input. However, the removal of the penalty on the control input also brings the information matrix of the data-based LQ (DBLQ) control design close to singular. In this work, the numerical difficulty of such a DBLQ computation is resolved by developing an ultra-precision (UP) arithmetic package and by conducting DBLQ computations using the UP package.
[1] Chan, J. T., 1996,”Optimal Output Feedback Regulator-A Numerical Synthesis Approach for Input-Output Data”, ASME/JDSMC, Vol.118.
[2] Chan, J. T., 1996,”Data-Based Synthesis of Multivariable LQ Regulator”, Automatica, Vol. 32, No. 3.
[3] Chan, J. T.,”Output Feedback Realization of State Systems”, The 39th IEEE Conference on Decision and Control, Sydney, Australia, December, 2000. Proceedings Vol.1, pp.3670-3675
[4] Chan, J. T., Tsair-Ren Tang. , 2002,” Singular LQ singal tracker – a data-based synthesis approach”,The 15th IFAC World Congress, Barcelona, Spain, July.
[5] Kelly, H.J., 1964, ”A transformation Approach to Singular in Optimal Trajectory and Control Problems”, SIAM,J. of Control, vol.2,234-240.
[6] Goh, B.S. ,1967,” Optimal Singular Control for Multi-unput Linear Systems”, J. of Mathematical Analysis and Applications, 20, 534-539
[7] Speyer, J.L., and D.H. Jacobson, 1971,”Necessary and sufficient Conditions of Optimality for Singular Control Problem; A transformation Approach”, J. of Mathematical Analysis and Applications, 33, 163-187.
[8] Jacobson, D.H., 1971,”Totally Singular Quadratic Minimization Problem”, IEEE tran.Auto. Conte., AC-16,Dec..
[9] Moore, J.B, and P.J. Moylan, 1971,” Generalizations of singular Optimal Control Theory”, Automatica, vol. 7,591-598
[10] Gene F. Franklin and J. David Powell,”Digital Control of Dynamic Systems”, Addison-Wesley publishing company, California, 1980.
[11] ANSI/IEEE 754-1985. ”American National Standard- IEEE Standard for Binary Floating-Point Arithmetic”. American National Standards Institute, Inc., New York, 1985.
[12] Dorf, R.c. ,1980, Modern control system, .Edition, Addison Wesley, New York,N.Y..
[13] 唐才仁,基於取樣數據之最佳化追蹤器設計-工程驗證之壹,國立成功大學航空工程研究所碩士論文,1996
[14] 陳政雄,數據化控制設計之效能評估(I):與傳統控制設計之比較,國立成功大學航空工程研究所碩士論文,2004
[15] 魏榮良,基於系統逆動態之數據化最佳控制設計,國立成功大學航空工程研究所碩士論文,2005