簡易檢索 / 詳目顯示

研究生: 黃聖堯
Huang, Sheng-Yao
論文名稱: 鈮添加量對高合金不銹鋼高溫氧化行為之研究
Investigation of Oxidation Behavior in High-Alloy Austenitic Stainless Steel Containing Nb
指導教授: 郭瑞昭
Kuo, Jui-Chao
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 191
中文關鍵詞: 高溫氧化沃斯田鐵系不銹鋼碳氮化鈮瘤狀氧化物EBSD
外文關鍵詞: oxidation, austenitic stainless steel, Nb(C, N), nodule, EBSD
相關次數: 點閱:110下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文針對不同的鈮添加量(0, 0.29, 0.58 及 0.86 wt%)對於 22Cr25NiWCoCu 不銹 鋼之高溫氧化行為進行探討。
    首先,針對經 1300 oC、2 小時退火後不銹鋼進行顯微組織的分析。XRD 繞射的 結果顯示,基材為完全的沃斯田鐵相。隨著鈮含量的上升,平均晶粒尺寸由 426 μm 下降至 90 μm。藉由 EBSD 及 EDS 的分析可得知,未添加鈮的不銹鋼中之析出物僅 有 Cr23C6,而 Nb(C, N)為含鈮不銹鋼之主要析出物,Nb(C, N)的平均尺寸及體積分率 皆隨著鈮含量的上升而增加。
    接著探討鈮含量對此不銹鋼於 900 oC 乾空氣中的高溫氧化行為之影響。TGA 的 結果顯示,隨著鈮含量增加,材料的氧化速率提高。低掠角 XRD 分析指出,鈮的添 加有助於氧化初期 Cr2O3 的生成。橫截面顯微組織分析的結果顯示,Nb(C, N)的周圍 之氧化速率較高,鉻貧乏區生成於其下方,導致鐵氧化物優先於其周圍生成,最終形 成內層為(Cr, Fe, Mn)3O4、外層為 Fe2O3,厚度約 20 μm 的氧化層。
    在以氬氣攜帶 20 %水蒸氣的實驗中,四種材料在實驗開始的 1.5 小時內皆有劇 烈的質量變化,1.5 小時後則趨於平緩,整體的氧化行為接近對數線律。SEM 的結果 顯示,四種材料中,(1 0 0)晶面經長時間的氧化後傾向形成顆粒狀的氧化物。顆粒狀 氧化物亦可被觀察到在不含鈮及含 0.29 wt%鈮材料的(1 1 0)晶面中,而在含 0.58 及 0.86 wt%鈮的材料中,氧化物的形貌轉變為連續且平行。磊晶型態的氧化物可在(1 1 1)晶面中被觀察到,所有材料的(1 1 1)晶面均以外延式生長的方式形成單晶氧化層, 僅有少量的顆粒狀氧化物生成。藉由 FIB、EBSD 及 EDS 進行的橫截面分析可得知, Nb(C, N)週圍的氧化行為不受晶面方向影響,且具有較高的氧化速率。

    The effects of precipitation and oxidation behavior on 22Cr25NiWCoCu stainless steels with different concentrations of niobium (Nb) (0, 0.29, 0.58, and 0.86 wt%) were explored. The microstructure of the as-annealed specimens was firstly explored, and the changes in grain size, precipitation behavior, and microhardness were recorded. Subsequently, the oxidation behavior of the steels in both air and Ar-20 % H2O at 900 oC were analyzed. In addition, the effects of the Nb precipitates on the oxidation behavior on the samples were also investigated.
    For the investigation of the as-annealed materials, an X-ray diffraction analysis showed that the matrix of all of the studied steels was austenite. The average grain size decreased from 426 μm to 90 μm with increases in the Nb content. EBSD and EDS analyses showed that Cr23C6 was the main precipitate in the Nb-free steel, whereas Nb(C, N) were the main precipitates in the Nb-containing steels. The volume fraction and average particle size of the precipitates increased with increases in the Nb content.
    In the oxidation test in air, a TGA analysis showed the oxidation rate of the steel increased with increases in the Nb content. The GI-XRD results indicated that the addition of Nb promoted Cr2O3 formation. After 10-100 h of oxidation, Cr-depletion occurred at the region with Nb(C, N) precipitates due to its high Cr consumption rate, leading to Fe oxide generation. Finally, after 100 h of oxidation, the outer layer of Fe2O3 and the inner layer of (Cr, Fe, Mn)3O4 formed.
    In the oxidation in Ar-20 % H2O, all of the specimens exhibited significant changes in mass during first 1.5 h, after which their growth rate slowed. SEM observation showed that the oxides on the (1 0 0) plane of the four steels had a granular form. For the (1 1 0) planes, granular oxides could be found in the 0-Nb and 0.29-Nb steels, but in the 0.58-Nb and 0.86-Nb steels, continuous parallel oxides formed. In the case of the (1 1 1) grain of the four steels, the oxide exhibited epitaxial growth characteristics, where only a few granular oxides formed. In addition, nodules were also found in the Nb-containing steels. A faster oxidation rate was clearly found on these nodules as compared to in the nodule free sites. A cross- sectional analysis using FIB, EBSD, and EDS showed that the formation these nodules was also induced by the addition of Nb.

    1. Introduction..........................................1 1.1 Introduction.........................................1 1.2 Objectives...........................................6 2. Literature review.....................................8 2.1 Advance austenitic stainless steel - Sanicro® 25.....8 2.1.1 Alloy design......................................12 2.1.2 Precipitation behavior............................16 2.1.3 Oxidation behavior................................20 2.2 High temperature oxidation..........................25 2.2.1 Thermodynamics....................................25 2.2.2 Oxidation kinetic.................................28 2.2.3 Oxides in stainless steels........................31 2.2.4 Effect of grain size on chromia formation.........33 2.2.5 Effects of preferred orientation on oxidation rates in pure metals..........................................35 3. Experiments..........................................36 3.1 Production of the steels............................36 3.2 Analysis on the microstructure and precipitates.....37 3.3 Analysis on the high temperature oxidation behavior in dry air.................................................39 3.4 Analysis on the high temperature oxidation behavior in Ar - 20 % H2O...........................................41 4. Results..............................................45 4.1 Phase identification of the as-annealed specimens...45 4.1.1 Microstructural analyses..........................45 4.1.2 Precipitation behavior............................49 4.1.3 Microhardness.....................................62 4.2 High temperature oxidation behavior of 22Cr25NiWCoCu stainless steels with 0 % - 0.86 % Nb in dry air........63 4.2.1 Oxidation kinetics................................63 4.2.2 Phase characterization of top surface.............67 4.2.3 Surface microstructure............................68 4.2.4 Cross sectional microstructure....................75 4.3 High temperature oxidation behavior of 22Cr25NiWCoCu stainless steels with 0 % - 0.86 % Nb in Ar-20 % H2O at 900 oC..................................................83 4.3.1 Oxidation kinetics................................85 4.3.2 Phase characterization of top surface.............87 4.3.3 Surface microstructure............................97 4.3.4 Cross sectional microstructure...................151 5. Discussion..........................................154 5.1 Effects of niobium on microstructure and precipitation in As-annealed steels..................................154 5.2 Effects of Nb addition on the oxidation behavior of the as-annealed steels in Air..........................155 5.3 Effects of Nb addition on the oxidation behavior of the as-annealed steels in Ar - 20 % H2O................159 6. Conclusions.........................................165 7. References..........................................166 8. Appendix............................................176

    1. M. Mengel, A. Levermann, K. Frieler, A. Robinson, B. Marzeion, and R. Winkelmann, "Future sea level rise constrained by observations and long-term commitment", Proceedings of the National Academy of Sciences, Vol.113, pp. 2597-2602, 2016.
    2. R.N.E. Huaman and T.X. Jun, "Energy related CO2 emissions and the progress on CCS projects: A review", Renewable and Sustainable Energy Reviews, Vol.31, pp. 368-385, 2014.
    3. A. Aroonwilas and A. Veawab, "Integration of CO2 capture unit using single- and blended-amines into supercritical coal-fired power plants: Implications for emission and energy management", International Journal of Greenhouse Gas Control, Vol.1, pp. 143-150, 2007.
    4. S.R. Pillai, "High temperature corrosion of austenitic stainless steels", in Corrosion of austenitic stainless steels. 2002, Elsevier: Netherlands. pp.265- 286.
    5. G. Wood, I. Wright, T. Hodgkiess, and D. Whittle, "A Comparison of the Oxidation of Fe-Cr, Ni-Cr and Co-Cr Alloys in Oxygen and Qater Vapour", Materials and Corrosion, Vol.21, pp. 900-910, 1970.
    6. N. Birks, G.H. Meier, and F.S. Pettit, "Introduction to the high temperature oxidation of metals", Cambridge University Press, England, 2006.
    7. A.T. Yokobori Jr, "Creep Crack Growth Behavior in Creep-Ductile and Creep- Brittle Materials", in Handbook of Materials Behavior Models, J. LeMaitre, Editor. 2001, Academic Press: United States. pp.597-610.
    8. J.S. Zhang, "High temperature deformation and fracture of materials", Elsevier, Netherlands, 2010.
    9. T. Sourmail, "Precipitation in creep resistant austenitic stainless steels", Materials Science and Technology, Vol.17, pp. 1-14, 2001.
    10. R.L. Plaut, C. Herrera, D.M. Escriba, P.R. Rios, and A.F. Padilha, "A short review on wrought austenitic stainless steels at high temperatures: processing, microstructure, properties and performance", Materials Research, Vol.10, pp. 453-460, 2007.
    11. S.R. Shatynski, "The thermochemistry of transition metal carbides", Oxidation of Metals, Vol.13, pp. 105-118, 1979.
    12. E.V. Morales, "Advanced austenitic heat-resistant steels for ultra-super-critical (USC) fossil power plants", in Alloy steel-properties and use. 2011, InTech: Croatia. pp.171-200.
    13. G. Chai, J.-O. Nilsson, M. Boström, J. Högberg, and U. Forsberg, "Advanced heat resistant austenitic stainless steels", in Advanced Steels, Y. Weng, H. Dong, and Y. Gan, Editors. 2011, Springer Science & Business Media: Germany. pp.385-397.
    14. G. Chai and U. Forsberg, "Sanicro 25: an advanced high-strength, heat-resistant austenitic stainless steel", in Materials for ultra-supercritical and advanced ultra-supercritical power plants, A.D. Gianfrancesco, Editor. 2016, Woodhead Publishing: England. pp.391-421.
    15. Y. Zhang, H. Jing, L. Xu, L. Zhao, Y. Han, and Y. Zhao, "High-temperature deformation and fracture mechanisms of an advanced heat resistant Fe-Cr-Ni alloy", Materials Science and Engineering: A, Vol.686, pp. 102-112, 2017.
    16. G. Chai and P. Kjellström. Creep and fracture behaviors of an advanced heat resistant austenitic stainless steel for A-USC power plant. in ICF13. 2013.
    17. S. Vujic, M. Farooq, B. Sonderegger, R. Sandström, and C. Sommitsch, "Numerical modelling and validation of precipitation kinetics in advanced creep resistant austenitic steel", Computer Methods in Materials Science, Vol.12, pp. 175-182, 2012.
    18. R. Zhou, L. Zhu, Y. Liu, Z. Lu, and L. Chen, "Precipitates and precipitation strengthening of Sanicro 25 welded joint base metal crept at 973 K", Steel Research International, Vol.88, pp. 1-9, 2017.
    19. R. Zhou, L. Zhu, Y. Liu, Z. Lu, L. Chen, and X. Ma, "Microstructural evolution and the effect on hardness of Sanicro 25 welded joint base metal after creep at 973 K", Journal of Materials Science, Vol.52, pp. 6161-6172, 2017.
    20. J. Zurek, S.M. Yang, D.Y. Lin, T. Hüttel, L. Singheiser, and W. Quadakkers, "Microstructural stability and oxidation behavior of Sanicro 25 during long‐ term steam exposure in the temperature range 600 - 750 oC", Materials and Corrosion, Vol.66, pp. 315-327, 2015.
    21. B. Rutkowski, A. Gil, and A. Czyrska-Filemonowicz, "Microstructure and chemical composition of the oxide scale formed on the Sanicro 25 steel tubes after fireside corrosion", Corrosion Science, Vol.102, pp. 373-383, 2016.
    22. E. Palmiere, C. Garcia, and A. De Ardo, "Compositional and microstructural changes which attend reheating and grain coarsening in steels containing niobium", Metallurgical and Materials Transactions A, Vol.25, pp. 277-286, 1994.
    23. L. Intiso, L.-G. Johansson, S. Canovic, S. Bellini, J.-E. Svensson, and M. Halvarsson, "Oxidation behaviour of Sanicro 25 (42Fe22Cr25NiWCuNbN) in O2/H2O mixture at 600 oC", Oxidation of Metals, Vol.77, pp. 209-235, 2012.
    24. L. Intiso, L.-G. Johansson, J.-E. Svensson, and M. Halvarsson, "Oxidation of Sanicro 25 (42Fe22Cr25NiWCuNbN) in O2 and O2 + H2O Environments at 600 - 750 oC", Oxidation of Metals, Vol.83, pp. 367-391, 2015.
    25. B. Rutkowski, A. Galanis, A. Gil, and A. Czyrska-Filemonowicz, "A novel approach to the characterization of thin oxide layers", Materials Letters, Vol.173, pp. 235-238, 2016.
    26. G. Allen, P. Tempest, J. Tyler, and R. Wild, "Oxidation behavior of 20 % Cr-25 % Ni-Nb stabilized stainless steel in CO2 environments", Oxidation of Metals, Vol.21, pp. 187-203, 1984.
    27. J.W. Tyler, "Characterization of the initial oxide formed on annealed and unannealed 20Cr-25Ni-Nb-stabilized steel in 50 torr CO2 at 973 K", Oxidation of Metals, Vol.24, pp. 149-176, 1985.
    28. H. Chen, H. Wang, Q. Sun, C. Long, T. Wei, S.H. Kim, J. Chen, C. Kim, and C. Jang, "Oxidation behavior of Fe-20Cr-25Ni-Nb austenitic stainless steel in high-temperature environment with small amount of water vapor", Corrosion Science, Vol.145, pp. 90-99, 2018.
    29. B. Pint and I. Wright, "Long-term high temperature oxidation behavior of ODS ferritics", Journal of Nuclear Materials, Vol.307, pp. 763-768, 2002.
    30. Q. Wu, J. Zhang, and Y. Sun, "Oxidation behavior of TiC particle-reinforced 304 stainless steel", Corrosion Science, Vol.52, pp. 1003-1010, 2010.
    31. J.T. Yuan, W. Wang, S.L. Zhu, and F.H. Wang, "Oxidation behavior of super 304H steel in steam at 700 - 900 oC", Journal of Chinese Society for Corrosion and Protection, Vol.34, pp. 218-224, 2014.
    32. L.P. Bonfrisco and M. Frary, "Effects of crystallographic orientation on the early stages of oxidation in nickel and chromium", Journal of Materials Science, Vol.45, pp. 1663-1671, 2010.
    33. W.E. Boggs, R.H. Kachik, and G.E. Pellissier, "The effects of crystallographic orientation and oxygen pressure on the oxidation of iron", Journal of The Electrochemical Society, Vol.114, pp. 32-39, 1967.
    34. P.M. Agrawal, B.M. Rice, and D.L. Thompson, "Predicting trends in rate parameters for self-diffusion on FCC metal surfaces", Surface Science, Vol.515, pp. 21-35, 2002.
    35. S.-Y. Huang, J.-C. Kuo, W.-T. Tsai, D.-Y. Lin, and Y.-T. Pan, "Effect of niobium on microstructure and precipitation in As-annealed Sanicro 25 steel", Ironmaking & Steelmaking, Vol.1-8, 2018.
    36. S.-Y. Huang, W.-T. Tsai, Y.-T. Pan, J.-C. Kuo, H.-W. Chen, and D.-Y. Lin, "Effect of Niobium Addition on the High-Temperature Oxidation Behavior of 22Cr25NiWCoCu Stainless Steel in Air", Metals, Vol.9, pp. 1-16, 2019.
    37. J.R. Davis, "Stainless steels", ASM international, United State, 1994.
    38. J.R. Davis, "ASM specialty handbook: heat-resistant materials", Asm
    International, United States, 1997.
    39. K. Kimura and Y. Takahashi. Evaluation of long-term creep strength of ASME Grades 91, 92, and 122 type steels. in ASME 2012 Pressure Vessels and Piping Conference. 2012. Toronto, Ontario, Canada: American Society of Mechanical Engineers Digital Collection.
    40. C. Tedmon, D. Vermilyea, and J. Rosolowski, "Intergranular corrosion of austenitic stainless steel", journal of the Electrochemical Society, Vol.118, pp. 192-202, 1971.
    41. J.H. Park, H.S. Seo, and K.Y. Kim, "Alloy design to prevent intergranular corrosion of low-Cr ferritic stainless steel with weak carbide formers", Journal of The Electrochemical Society, Vol.162, pp. 412-418, 2015.
    42. R.L. Cowan and C.S. Tedmon, "Intergranular corrosion of iron-nickel- chromium alloys", in Advances in corrosion science and technology. 1973, Springer Science & Business Media: Germany. pp.293-400.
    43. R. Rautio and S. Bruce. Sanicro 25, a new material for ultra supercritical coal fired boilers. in Proc. 4th Inter Conf. on Adv. in Mater. Technol. for fossil power plants. 2004. Indonesia.
    44. H. Bhadeshia and R. Honeycombe, "Steels: microstructure and properties", Butterworth-Heinemann, England, 2017.
    45. A. Di Schino, M.G. Mecozzi, M. Barteri, and J. Kenny, "Solidification mode and residual ferrite in low-Ni austenitic stainless steels", Journal of Materials Science, Vol.35, pp. 375-380, 2000.
    46. N. Suutala, "Effect of solidification conditions on the solidification mode in austenitic stainless steels", Metallurgical Transactions A, Vol.14, pp. 191-197, 1983.
    47. K. Rajasekhar, C. Harendranath, R. Raman, and S. Kulkarni, "Microstructural evolution during solidification of austenitic stainless steel weld metals: a color metallographic and electron microprobe analysis study", Materials Characterization, Vol.38, pp. 53-65, 1997.
    48. S. Latha, M. Mathew, P. Parameswaran, K.B.S. Rao, and S. Mannan, "Thermal creep properties of alloy D9 stainless steel and 316 stainless steel fuel clad tubes", International Journal of Pressure Vessels and Piping, Vol.85, pp. 866- 870, 2008.
    49. K. Lücke and K. Detert, "A quantitative theory of grain-boundary motion and recrystallization in metals in the presence of impurities", Acta Metallurgica, Vol.5, pp. 628-637, 1957.
    50. M. Mendelev and D. Srolovitz, "A regular solution model for impurity drag on a migrating grain boundary", Acta Materialia, Vol.49, pp. 589-597, 2001.
    51. M. Hillert, "Solute drag, solute trapping and diffusional dissipation of Gibbs energy", Acta Materialia, Vol.47, pp. 4481-4505, 1999.
    52. R. Klueh, "Elevated temperature ferritic and martensitic steels and their application to future nuclear reactors", International Materials Reviews, Vol.50, pp. 287-310, 2005.
    53. P. Robinson and D. Jack, "Precipitation of Z-phase in a high-nitrogen stainless steel", Journal of Heat Treating, Vol.4, pp. 69-74, 1985.
    54. D.H. Jack and K.H. Jack, "Structure of Z-phase, NbCrN", Journal of Iron and Steel international, Vol.210, pp. 790-792, 1972.
    55. A.J. Sedriks, "Corrosion of stainless steel", Office of Scientific and Technical Information, United States, 1996.
    56. F. Lang, "Effects of Trace Elements on Stress-Corrosion Cracking Of Austenitic Stainless Steels in Chloride Solutions", Corrosion, Vol.18, pp. 378-382, 1962.
    57. R. Staehle, J. Royuela, T. Raredon, E. Serrate, C. Morin, and R. Farrar, "Effect of alloy composition on stress corrosion cracking of Fe-Cr-Ni base alloys", Corrosion, Vol.26, pp. 451-486, 1970.
    58. H.H. Uhlig and R.A. White, "Some Metallurgical Factors Affecting Stress Corrosion Cracking of Austenitic Stainless Steels". Available online:
    59. S. J and M. G, "Superalloys II: High-Temperature Materials for Aerospace and Industrial Power", Wiley-Interscience publication, United States, 1987.
    60. F. Stott, G. Wood, and J. Stringer, "The influence of alloying elements on the development and maintenance of protective scales", Oxidation of Metals, Vol.44, pp. 113-145, 1995.
    61. X. Xu, X. Zhang, G. Chen, and Z. Lu, "Improvement of high-temperature oxidation resistance and strength in alumina-forming austenitic stainless steels", Materials Letters, Vol.65, pp. 3285-3288, 2011.
    62. M.P. Brady, Y. Yamamoto, M.L. Santella, P.J. Maziasz, B.A. Pint, C. Liu, Z. Lu, and H. Bei, "The development of alumina-forming austenitic stainless steels for high-temperature structural use", High-Temperature Alloys, Vol.60, pp. 12-18, 2008.
    63. P. Jamrozik and M. Sozańska, "Evaluation of the applicability of Sanicro 25 steel in supercritical boilers", Solid State Phenomena, Vol.212, pp. 201-204, 2014.
    64. M. Hasegawa, "Ellingham diagram", in Treatise on Process Metallurgy, S. Seetharaman, Editor. 2014, Elsevier: Netherlands. pp.507-516.
    65. D.R. Gaskell, "Introduction to metallurgical thermodynamics", Taylor & Francis, England, 1981.
    66. P. Kofstad, "High Temperature Corrosion", Elsevier, Netherlands, 1988.
    67. D.A. Jones, "Principles and prevention of corrosion", Macmillan, England, 1992.
    68. A.S. Khanna, "Introduction to high temperature oxidation and corrosion", ASM International, United States, 2002.
    69. R.E. Lobnig, H.P. Schmidt, K. Hennesen, and H.J. Grabke, "Diffusion of cations in chromia layers grown on iron-base alloys", Oxidation of Metals, Vol.37, pp. 81-93, 1992.
    70. M. Cox, B. McEnaney, and V. Scott, "A chemical diffusion model for partitioning of transition elements in oxide scales on alloys", Philosophical Magazine, Vol.26, pp. 839-851, 1972.
    71. R.K. Wild, "High temperature oxidation of austenitic stainless steel in low oxygen pressure", Corrosion Science, Vol.17, pp. 87-104, 1977.
    72. I.-H. Jung, "Critical evaluation and thermodynamic modeling of the Mn-Cr-O system for the oxidation of SOFC interconnect", Solid State Ionics, Vol.177, pp. 765-777, 2006.
    73. E. Hryha and L. Nyborg. Sintering of Fe-Based Alloys: Oxide Transformation During Sintering Of Prealloyed Water Atomized Steel Powder. in World PM2010 Congress & Exhibition. 2010. Italy: The European Powder Metallurgy Association.
    74. D.M. Smyth, "Deviations from stoichiometry in MnO and FeO", Journal of Physics and Chemistry of Solids, Vol.19, pp. 167-169, 1961.
    75. P. Huczkowski, N. Christiansen, V. Shemet, L. Niewolak, J. Piron‐Abellan, L. Singheiser, and W.J. Quadakkers, "Growth mechanisms and electrical conductivity of oxide scales on ferritic steels proposed as interconnect materials for SOFC's", Fuel Cells, Vol.6, pp. 93-99, 2006.
    76. G.C. Wood, "High-temperature oxidation of alloys", Oxidation of Metals, Vol.2, pp. 11-57, 1970.
    77. G. Wood and D. Whittle, "The mechanism of breakthrough of protective chromium oxide scales on Fe-Cr alloys", Corrosion Science, Vol.7, pp. 763-782, 1967.
    78. A. Marasco and D. Young, "The oxidation of iron-chromium-manganese alloys at 900 oC", Oxidation of Metals, Vol.36, pp. 157-174, 1991.
    79. H. Evans, "Cracking and spalling of protective oxide layers", Materials Science and Engineering: A, Vol.120, pp. 139-146, 1989.
    80. H. Evans and R. Lobb, "Conditions for the initiation of oxide-scale cracking and spallation", Corrosion Science, Vol.24, pp. 209-222, 1984.
    81. M. Bennett, H. Bishop, P. Chalker, and A. Tuson, "The influence of cerium, yttrium and lanthanum ion implantation on the oxidation behaviour of a 20Cr-25Ni-Nb stainless steel in carbon dioxide at 900-1050 oC", Materials Science and Engineering, Vol.90, pp. 177-190, 1987.
    82. M.J. Bennett, D.J. Buttle, P.D. Colledge, J.B. Price, C.B. Scruby, and K.A. Stacey, "Spallation of oxide scales from 20 % Cr-25 % Ni-Nb stainless steel", Materials Science and Engineering: A, Vol.120, pp. 199-206, 1989.
    83. J. Desport and M. Bennett, "Investigation by fractography of the high- temperature oxidation of the 20 % Cr-25 % Ni-Nb stainless steel", Oxidation of Metals, Vol.29, pp. 327-346, 1988.
    84. P. Tomaszewicz and G.R. Wallwork, "The oxidation of high-purity iron- chromium-aluminum alloys at 800 oC", Oxidation of Metals, Vol.20, pp. 75- 109, 1983.
    85. P.R.S. Jackson and G.R. Wallwork, "High temperature oxidation of iron- manganese-aluminum based alloys", Oxidation of Metals, Vol.21, pp. 135-170, 1984.
    86. H. Evans, D. Hilton, and R. Holm, "Chromium-depleted zones and the oxidation process in stainless steels", Oxidation of Metals, Vol.10, pp. 149-161, 1976.
    87. R.C. Lobb and H.E. Evans, "An evaluation of the effect of surface chromium concentration on the oxidation of a stainless steel", Corrosion Science, Vol.23, pp. 55-73, 1983.
    88. R.C. Lobb and H.E. Evans, "The oxidation of chromium-depleted stainless steels in a CO2-based gas of low sulphur activity", Corrosion Science, Vol.25, pp. 503-518, 1985.
    89. D. Caplan and G. Sproule, "Effect of oxide grain structure on the high- temperature oxidation of Cr", Oxidation of Metals, Vol.9, pp. 459-472, 1975.
    90. M. Lambertin, A. Stoklosa, and W.W. Smeltzer, "Oxidation properties of Fe- 5Cr-4Al (wt.%) alloys in oxygen at temperatures 1000 oC-1320 oC", Oxidation of Metals, Vol.15, pp. 355-373, 1981.
    91. P. Tomaszewicz and G. Wallwork, "Observations of nodule growth during the oxidation of pure binary iron-aluminum alloys", Oxidation of Metals, Vol.19, pp. 165-185, 1983.
    92. R. Elger and R. Pettersson, "Effect of Addition of 4 % Al on the High Temperature Oxidation and Nitridation of a 20Cr-25Ni Austenitic Stainless Steel", Oxidation of metals, Vol.82, pp. 469-490, 2014.
    93. Z.G. Zhang, P.Y. Hou, F. Gesmundo, and Y. Niu, "Effect of surface roughness on the development of protective Al2O3 on Fe-10Al (at.%) alloys containing 0- 10 at.% Cr", Applied Surface Science, Vol.253, pp. 881-888, 2006.
    94. R. Lobb and H. Evans, "A determination of the chromium concentration for ‘healing’layer formation during the oxidation of chromium-depleted 20Cr- 25Ni-Nb stainless steel", Corrosion Science, Vol.24, pp. 385-396, 1984.
    95. K. Ledjeff, A. Rahmel, and M. Schorr, "Influence of metal grain growth on the oxidation behavior of a 25Cr-20Ni steel", Oxidation of Metals, Vol.15, pp. 485- 493, 1981.
    96. E. Hart, "On the role of dislocations in bulk diffusion", Acta Metallurgica, Vol.5, pp. 597, 1957.
    97. W. Smeltzer, R. Haering, and J. Kirkaldy, "Oxidation of metals by short circuit and lattice diffusion of oxygen", Acta Metallurgica, Vol.9, pp. 880-885, 1961.
    98. P. Heitjans and J. Kärger, eds. "Diffusion in condensed matter: methods, materials, models", Springer Science & Business Media, Germany, 2006.
    99. W. Gust, S. Mayer, A. Bögel, and B. Predel, "Generalized representation of grain boundary self-diffusion data", Le Journal de Physique Colloques, Vol.46, pp. 537-544, 1985.
    100. N.A. Gjostein, "Diffusion", American Society of Metals Park, United States, 1973.
    101. T. Jonsson, B. Pujilaksono, S. Hallström, J. Ågren, J.-E. Svensson, L.-G. Johansson, and M. Halvarsson, "An ESEM in situ investigation of the influence of H2O on iron oxidation at 500 oC", Corrosion Science, Vol.51, pp. 1914-1924, 2009.
    102. F.H. Latief, K. Kakehi, and E.-S.M. Sherif, "High temperature oxidation behavior of aluminide on a Ni-based single crystal superalloy in different surface orientations", Progress in Natural Science: Materials International, Vol.24, pp. 163-170, 2014.
    103. P. Villars, "Pearson's Handbook of Crystallographic Data for Intermediate Phases", ASM International, United States, 1997.
    104. H. Yakel, "Atom distributions in tau-carbide phases: Fe and Cr distributions in (Cr23−xFex)C6 with x= 0, 0.74, 1.70, 4.13 and 7.36", Acta Crystallographica Section B: Structural Science, Vol.43, pp. 230-238, 1987.
    105. R. Kieffer, H. Nowotny, P. Ettmayer, and G. Dufek, "Neue untersuchungen über die mischbarkeit von übergangsmetallnitriden und-karbiden", Metall, Vol.26, pp. 701-708, 1972.
    106. M. Kikuchi, M. Sakakibara, Y. Otoguro, H. Mimura, S. Araki, and T. Fujita, "An austenitic heat resisting steel tube developed for advanced fossil-fired steam plants", in High temperature alloys. 1987, Springer Science & Business Media: Netherlands. pp.267-276.
    107. M. Okayasu, S. Wu, K. Noda, D.-Y. Lin, and S.-M. Yang, "Mechanical properties of austenitic stainless steel with high niobium contents", Materials Science and Technology, Vol.32, pp. 1382-1394, 2016.
    108. N.L. Peterson, "Grain-boundary diffusion in metals", International Metals Reviews, Vol.28, pp. 65-91, 1983.
    109. V.B. Trindade, U. Krupp, B.Z. Hanjari, S. Yang, and H.-J. Christ, "Effect of alloy grain size on the high-temperature oxidation behavior of the austenitic steel TP 347", Materials Research, Vol.8, pp. 371-375, 2005.
    110. J.H. Kim, D.I. Kim, S. Suwas, E. Fleury, and K.W. Yi, "Grain-size effects on the high-temperature oxidation of modified 304 austenitic stainless steel", Oxidation of Metals, Vol.79, pp. 239-247, 2013.
    111. X. Peng, J. Yan, Y. Zhou, and F. Wang, "Effect of grain refinement on the resistance of 304 stainless steel to breakaway oxidation in wet air", Acta Materialia, Vol.53, pp. 5079-5088, 2005.
    112. F. Saegusa and L. Lee, "Oxidation of Iron-aluminum alloys in the range 500- 1000 oC", Corrosion, Vol.22, pp. 168-177, 1966.
    113. M.O. Speidel, "Nitrogen containing austenitic stainless steels", Materialwissenschaft und Werkstofftechnik, Vol.37, pp. 875-880, 2006.

    無法下載圖示 校內:2022-06-30公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE