| 研究生: |
林德瑋 Lin, De-Wei |
|---|---|
| 論文名稱: |
利用超臨界二氧化碳電鍍法於經熱處理之陽極氧化鋁模板進行奈米孔銅金屬沉積之研究 Application of supercritical carbon dioxide electrodeposition for copper filling into nano-holes in heat-treated anodic aluminum oxide template |
| 指導教授: |
蔡文達
Tsai, Wen-Ta |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 96 |
| 中文關鍵詞: | 奈米孔洞 、銅金屬電沉積 、陽極氧化鋁陣列 、超臨界二氧化碳電鍍 |
| 外文關鍵詞: | metal filling, high aspect ratio nano-hole, anodic aluminum oxide template, supercritical carbon dioxide electrodeposition |
| 相關次數: | 點閱:156 下載:10 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以熱處理的方法將陽極氧化鋁模板進行改質以降低其親水後,利用乳化超臨界二化碳電鍍法進行高深寬比奈米孔洞之金屬填充。經過陽極氧化後之鋁模板在860 oC/24h熱處理後,其厚度約為5 m,孔洞直徑約為60 nm,深寬比為83左右。銅金屬電鍍填孔是在50 oC、10 MPa的壓力下於含有約40%的乳化超臨界二氧化碳流體及60%硫酸銅水溶液之電解液中進行。電沈積之後,利用掃描式電子顯微鏡(SEM)、穿透式電子顯微鏡(TEM)及能譜散射分析儀(EDS)對試片進行分析。實驗結果顯示:乳化超臨界二氧化碳電鍍法可以在疏水性的高深寬比奈米孔洞中有效進行金屬銅電鍍沉積,優於常壓下之傳統電鍍。
Copper metal filling into heat-treated anodized aluminum oxide (AAO) nano-array holes was attempted by electrodeposition involving emulsified supercritical carbon dioxide (sc-CO2) fluid, in comparison with that performed using conventional process at ambient pressure. The AAO template was likely hydrophobic in nature after being heat treated at 860 oC/24h. It had a dimension of about 5 um in thickness with an average hole-size of 60 nm and an aspect ratio of 83. Copper electrodeposition was conducted at 50 oC and at a pressure of 10 Mpa in an electrolyte consisting of 40 vol% of sc-CO2 and 60 vol% of CuSO4 aqueous solution. Both constant potential (-0.4 VPt, -0.5 VPt, -0.6 VPt) and constant current density (-10 mA/cm2) conditions were applied for metal filling. After electrodeposition, the extent of metal filling was examined using a scanning electron microscope (SEM) , and a transmission electron microscope (TEM), both coupled with an energy dispersive spectrometer (EDS). When as-anodized AAO template was used, a higher filling efficiency (in terms of cross section area percentage) was found in sc-CO2 bath than in conventional bath. When heat-treated AAO template was used, copper filling into the high aspect ratio nano-holes could be successfully achieved by sc-CO2 electrodeposition, while it was not possible in conventional bath. The advantage of sc-CO2 electrodeposition over that of conventional process was mainly attributed to the change of hydrophobicity of AAO template induced by heat treatment.
1. Cerrina F and Marrian C, A path to nanolithography, MRS Bull. 21,pp.56-62,1996.
2. H. Choi and S. Park, Seedless Growth of Free-Standing Copper
Nanowires by Chemical Vapor Deposition, J. Am. Chem. Soc., vol. 126,
pp.6248-6249, 2004.
3. Gyu-Chul Yi, Semiconductor Nanostructures for Optoelectronic Devices,
Springer-Verlag Berlin Heidelberg.
4. J. Sarkar, G.G Khan and AbasuMallick, Nanowires: properties,
applications and synthesis via porous anodic aluminium oxide template, Bull. Mater. Sci., vol. 30, pp.271-290, 2007.
5. Z.Wang, M.Brust, Fabrication of nanostructure via self-assembly of nanowires within the AAO template, Nanoscale Res Lett, vol. 2, pp. 34-39, 2007.
6. T. Gao, G. Meng, Y. Wang, S. Sun and L. Zhang, Electrochemical synthesis of copper nanowires, J. Phys.: Condens. Matter, vol.14, pp.355-363, 2002.
7. C. Li, J. Yang, W. Tsai, C. Lin, T. Chang, M. Sone, High aspect ratio micro-hole filling employing emulsified supercritical CO2 electrolytes, J. of Supercritical Fluids, vol.109, pp.61–66, 2016.
8. Masanori Hayase, Munemasa Taketani, Koji Aizawa, Takeshi Hatsuzawa, Keisuke Hayabusa, Copper Bottom-up Deposition by Breakdown of PEG-Cl Inhibition, Electrochemical and Solid-State Letters, 5 ,C98-C101, 2002.
9. James J. Kelly, Alan C. West, Copper Deposition in the Presence of Polyethylene Glycol, Journal of The Electrochemical Society, 145, pp.3477-3481,1998.
10. Chang Hwa Lee, Sang Chul Lee, and Jae Jeong Kim, Improvement of Electrolessly Gap-Filled Cu Using 2,2-Dipyridyl and Bis-(3-sulfopropyl)-disulfide (SPS), Electrochemical and Solid-state Letter, 8, C110-C113,2005.
11. Qianwen Chen, Zheyao Wang, Jian Cai, Litian Liu, Microelectronic Engineering, 87, pp.527-531, 2010.
12. Hideo Yoshida, Masato Sone, Hiroaki Wakabayashi, Hao Yan, Kentaro Abe, Xu Tang Tao, Aya Mizushima, Shoji Ichihara, Seizo Miyata, New electroplating method of nickel in emulsion of supercritical carbon dioxide and electroplating solution to enhance uniformity and hardness of plated film, Thin Solid Films, 446, pp.194–199, 2004.
13. 鄭祺霖,利用超臨界二氧化碳電鍍法於高深寬比奈米孔洞進行銅金屬沉積之研究, 2016.
14. H. Masuda, K. Nishio, M. Adachi and D.J. Lockwood, Self-organized Nanoscale Materials, (2006), Springer Science+Business Media, Inc.
15. S. Ju, A. Facchetti., Y. Xuan, J. Liu, F. Ishikawa, P. Ye, C Zhou, T. J. Marks and D. B. James, Fabrication of fully transparent nanowire transistors for transparent and flexible electronics. Nat. Nanotechnol., vol.2, pp.378 – 384, 2007.
16. M. Karlson, Nano-Porous Aluminia, a Potential Bone Implant Coating. Comprehensive Summaries of Uppsala Dissertations,The Faculty Of Science And Technology, Acta Universitatis Upsaliensis, Kiruna ,997, 2004.
17. L.G. Parkinson, N.L. Giles, K.F. Adcroft, M.W. Fear, F.M. Wood, and G.E. Poinern. Tissue Engineering Part A, vol.15, pp.3753-3763, 2009.
18. G. E. J. Poinern, D. Fawcett, Y. J. Ng, N. Ali, R. K. Brundavanam, Z.T. Jiang, Nanoengineering a biocompatible inorganic scaffold for skin wound healing, J. BioMed. Nanotech, vol.6, pp. 497-510, 2010.
19. G.E.J. Poinern, N. Ali, and D. Fawcett, Progress in Nano-Engineered Anodic Aluminum Oxide Membrane Development. Materials, vol. 4, pp.487-526, 2011.
20. O. Jessensky, F. Müller and U. Gösele, Self-organized formation of hexagonal pore arrays in anodic alumina, Appl. Phys. Lett. ,vol. 72, pp. 1173-1175, 1998.
21. O'Sullivan, J.P. and Wood, G.C., The Morphology and Mechanism of Formation of Porous Anodic Films on Aluminum , Proc. Roy. Soc. Lond. A, vol. 317,pp. 511-543, 1970.
22. A. P. Li, F. Müller, A. Birner, K. Nielsch and U. Gösele, Hexagonal pore arrays with a 50–420 nm interpore distance formed by self-organization in anodic aluminaJ. Appl. Phys., vol.84, pp.6023-6026, 1998.
23. F.Li, L.Zhang, and R.M. Metzger, On the Growth of Highly Ordered Pores in Anodized Aluminum Oxide, Chem. Mater., vol. 10, pp. 2470-2480, 1998.
24. Grzegorz D. Sulka, Nanostructured Materials in Electrochemistry, (2008), Wiley-VCH Verlag GmbH & Co. KGaA.
25. A. Belwalkar, E. Grasing, W. V.Geertruyden, Z. Huang, and W.Z. Misiolek, Effect of Processing Parameters on Pore Structure and Thickness of Anodic Aluminum Oxide (AAO) Tubular Membranes, J Memb Sci. ,vol.319, pp.192-198, 2008.
26. M. Ghorbani , F. Nasirpouri , A. Iraji zad, A. Saedi, On the growth sequence of highly ordered nanoporous anodic aluminium oxide, Materials and Design, vol.27, pp.983-988 ,2006.
27. J.Zhang, J.E. Kielbasa, D. L. Carroll, Controllable fabrication of porous alumina templates for nanostructures synthesis, Materials Chemistry and Physics , vol. 122, pp. 295-300, 2010.
28. I. Pastore, R. Poplausks, I. Apsite, I. Pastare, F. Lombardi and D. Erts, Fabrication of ultra thin anodic aluminium oxide membranes by low anodization voltages, Materials Science and Engineering , vol. 23, pp.012-025 ,2011.
29. Terry T. Xu, Richard D. Piner, and Rodney S. Ruoff, An Improved Method To Strip Aluminum from Porous Anodic Alumina Films, Langmuir, vol.19, pp.1443–1445, 2003.
30. J. Cui, Y. Wu, Y. Wang, H. Zheng, G. Xu, X. Zhang, A facile and efficient approach for pore-opening detection of anodic aluminum oxide membrane, Applied Surface Scienc, vol. 258, pp.5305-5311, 2012.
31. N. Itoh , K. Kato , T. Tsuji , M. Hongo, Preparation of a tubular anodic aluminum oxide membrane, Journal of Membrane Science , vol.117,pp.189-196, 1996.
32. K. Itaya, S. Sugawara, K. Arai and S. Saito, Properties of anodic aluminum oxide films as membrane, Journal of Chemical Engineering of Japan, vol. 17, pp.514-520, 1984.
33. Z. Su and W. Zhou, Formation Mechanism of Porous Anodic Aluminium and Titanium Oxides, Adv. Mater., vol.20, pp.3663–3667, 2008.
34. Małgorzata Norek, Andrzej Krasiński, Controlling of water wettability by structural and chemical modification of porous anodic alumina (PAA): Towards super-hydrophobic surfaces, Surface & Coatings Technology 276, pp.464-470, 2015.
35. M.E. Mata-Zamora and J.M. Saniger, Thermal evolution of porous anodic aluminas: a comparative study, Revista Mexicana de fi’sica , vol.51, pp.502-509, 2005.
36. G. Xiong, J.W. Elam, H. Feng,|C.Y. Han, H. Wang, L.E. Iton, L.A. Curtiss, M.J. Pellin, M.Kung,|H. Kung, and P.C. Stair, Effect of Atomic Layer Deposition Coatings on the Surface Structure of Anodic Aluminum Oxide Membranes, J. Phys. Chem. B, vol.109,pp. 14059-14063, 2005.
37. P.P. Mardilovicha, A.N. Govyadinovb, N. I. Mukhurovb, A.M. Rzhevskiic, R.Paterson, New and modified anodic alumina membranes Part I. Thermotreatment of anodic alumina membranes, Journal of Membrane Science, vol.98, pp. 131-142, 1995.
38. M. Kylan McQuaig Jr., Alejandro Toro, William Van Geertruyden, Wojciech Z. Misiolek, The effect of high temperature heat treatment on the structure and properties of anodic aluminum oxide, J master sci, 46, pp.243-253, 2011.
39. T. Clifforo, “Fundamentals of supercritical fluids”, Unitied Kingdom: Oxford University Press, 1999.
40. R. C. Reid, J. M. P., B. E. Poling, “The Properties of Gases and Liquids”, New York: McGraw-Hill, 1986
41. J. R. Williams, A.A.C., S. H. R. Al-Saidi, “Supercritical Fluids and Their Applications in Biotechnology and Related Areas”, Molecular Biotechnology, 22, 263, 2002.
42. J. A. Darr, M. Poliakoff., “New Directions in Inorganic and Meta-Organic Coordination Chemistry in Supercritical Fuilds”, Chemical Reviews, 99, pp.495-542, 1999.
43. M. Lora, L.K., “Polymer processing with supercritical fluid: an overview”, Separation and purification methods, 28, 179, 1999.
44. B. Subramaniam, R.A.R., K. Snavely, “Pharmaceutical Processing with Supercritical Carbon Dioxide”, Journal of Pharmaceutical Science, 86, 885, 1997.
45. G. L. Weibel, C.K.O., “An overview of supercritical CO2 applications in microelectronics processing”, Microelectronic Engineering, 65, 145, 2003.
46. P.Raveendran, Y.I., S. Wallen, “Polar Attributes of supercritical Carbon Dioxide”, Accounts of Chemical Research, 38, 478, 2005.
47. W. Ryoo, S.E.W., K. P. Johnston, “Water-in-Carbon Dioxide Microemulsions with Methylated Branched Hydrocarbon Surfactants”, Industrial and Engineering Chemistry Research, 42, 6348, 2003.
48. S. Kaneshina, O.S., M. Nakamura, “Effect of pressure on the cloud point of nonionic surfactant solutions and the solubilization of hydrocarbons”, Bulletin of the Chemical Society of Japan, 52, 42, 1979.
49. Einaga, Y., “Phase Diagram of Dilute Micelle Solutions of Polyoxyethylene Alkyl Ethers”, Polymer Journal, 39, 1082, 2007.
50. Kazuo Kondo, Toshihiro Yonezawa, “High-Aspect-Ratio Copper-Via-Filling for Three-Dimensional Chip Stacking”, Journal of The Electrochemical Society, 152, H173-H177, 2005.
51. N. Shinoda, T. Shimizu, T. Chang, A. Shibata, M. Sone, Filling of nanoscale holes with high aspect ratio by Cu electroplating using suspension of supercritical carbon dioxide in electrolyte with Cu particles, Microelectronic Engineering, vol. 97,pp. 126-129, 2012.
52. N. Shinoda, T. Shimizu, T. Chang, A. Shibata, M. Sone, Cu electroplating using suspension of supercritical carbon dioxide in copper-sulfate-based electrolyte with Cu particles, Thin Solid Films, vol.529,pp. 29-33, 2013.
53. 楊竣傑,以乳化超臨界二氧化碳流體進行高深寬比奈米孔洞填充之研究, 2015.
54. H. Chuang, G. Hong, J. Sanchez, Fabrication of high aspect ratio copper nanowires using supercritical CO2 fluids electroplating technique in AAO template, Materials Science in Semiconductor Processing, vol.45, pp.17-26, 2016.
55. G.E. Thompson and G.C. Wood, Porous anodic film formation on alumina, Nature, Vol.290, 1981.