| 研究生: |
陳郁蓁 Chen, Grace |
|---|---|
| 論文名稱: |
低頻經皮神經電刺激減緩大鼠接受皮膚/肌肉切開與撐開術後之疼痛 Low-Frequency Transcutaneous Electrical Nerve Stimulation Suppresses Skin/Muscle Incision and Retraction-induced Postoperative Pain in Rats |
| 指導教授: |
洪菁霞
Hung, Ching-Hsia |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 物理治療學系 Department of Physical Therapy |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 英文 |
| 論文頁數: | 89 |
| 中文關鍵詞: | 皮膚/肌肉-切開術 、經皮神經電刺激 、術後疼痛 、痛覺超敏 、痛覺過敏 |
| 外文關鍵詞: | skin/muscle incision and retraction, transcutaneous electrical nerve stimulation, postoperative pain, allodynia, hyperalgesia |
| 相關次數: | 點閱:103 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
背景及目的: 持續的術後疼痛是在進行皮膚/肌肉-切開術(SMIR)後常見的問題。皮膚/肌肉-切開術的動物模型也被學界應用在研究術後造成淺層腓神經的神經性疼痛上。在臨床上,高頻/低頻經皮神經電刺激(TENS)也是常被用來處理術後造成的神經性疼痛,他主要透過門閾控制理論和啟動內啡肽的路徑來達到止痛效果。先前的研究指出低頻電刺激比起高頻電刺激在術後疼痛的控制上更為有效,但是是否在SMIR模型上有效則尚未知道。因此本研究的目的就在確認低頻TENS治療是否對於SMIR手術所造成的術後疼痛有有效的治療效果。
方法: 本研究的動物模型使用的是成年雄性SD大鼠,實驗組別分為: SMIR短期組(實驗為期一週)、SMIR長期組(實驗為期四週)、假手術控制組(儘切開未撐開)、SMIR+低頻TENS治療組、SMIR+低頻TENS治療+密集行為測試組。測試神經病理性疼痛的測試方式為使用von Frey纖毛測試機械性敏感度,以及Plantar儀器測試溫覺敏感度。TENS治療組的動物會接受每天一次、每周五次的TENS治療,參數設定為2Hz,脈衝頻寬100μs,持續20分鐘的治療。最後一次治療在術後七天進行。
結果: 接受SMIR手術的大鼠在術後第三天就在手術側出現了維持一周的短期觸覺過敏現象,而溫覺過敏的現象則維持了四週。觸覺過敏現象出現在了接收SMIR手術的大鼠雙側腳掌上,而溫覺過敏則主要集中在手術對側。在接受低頻TENS治療後的24小時中,低頻TENS的治療效果維持了大約4小時,但治療效果並沒有維持到24小時。接受低頻TENS的SMIR大鼠的縮回反應有明顯的減少,但是觸覺過敏的現象在不同的時間點產生恢復。在一週的低頻TENS治療期後,機械性過敏的現象在隔週就馬上恢復。另外,接受TENS治療的SMIR大鼠在雙側的痛覺過敏現象比起沒接受治療的SMIR都有得到改善。溫覺過敏的現象在三組之中的同側並沒有顯著的差異,但比起SMIR組低頻TENS治療還是在對側改善了症狀。
結論: SMIR手術在動物身上造成了明顯的痛覺過敏現象,接受低頻TENS治療後由SMIR手術所引起的術後疼痛得到明顯的壓制。基於本篇研究的結果,可建立未來在低頻TENS治療長期效果的研究和臨床應用。
Background and Purpose: Persistent postoperative pain is a common problem after the skin/muscle incision and retraction (SMIR) procedure. The SMIR model has been introduced to develop pain hypersensitivity from the saphenous nerve (SPN) injury leading to allodynia and hyperalgesia. Moreover, the transcutaneous electrical nerve stimulation (TENS) is a common clinical treatment that reduces neuropathic pain, and the applications of high-frequency (HF) and low-frequency (LF) TENS provide two theories of mechanisms. Previous studies have shown LF is less effective than HF in post-surgical pain and other models. However, its underlying mechanism suggests whether LF TENS is reliable for pain relief from the SMIR surgery remains unclear. Therefore, the purpose of this study is to determine the effects of LF TENS suppressing SMIR-induced postoperative pain in rats.
Methods: Male Sprague-Dawley rats were randomly assigned to the following groups: skin/muscle incision and retraction (SMIR) group (1 week), skin/muscle incision and retraction (SMIR) group (4 weeks), sham operation group, SMIR with LF TENS (SMIR+LF TENS) group (1 week), and SMIR with LF TENS (1 week) plus extensive behavior testing (SMIR+LF TENS) group. von Frey filaments and Hargreaves plantar apparatus were used to assess the symptoms of neuropathic pain. The SMIR+LF TENS groups received the TENS treatment set at 2 Hz and pulse width of 100 μs with a duration of 20 minutes per day (one time) and 5 days per week for one week. The rats received their last treatments on POD 7 since the SMIR surgery.
Results: The SMIR-operated rats displayed short-term mechanical allodynia and thermal hyperalgesia on the ipsilateral hind paw on POD 3 for one week, but long-lasting hyperalgesia persisted for four weeks after surgery (p<0.05). Tactile allodynia in the SMIR group was significantly increased than the sham group on both sides; whereas, thermal hyperalgesia occurred more on the contralateral side (p<0.05). During the 24-hour LF TENS treatment course, its therapeutic effect maintained shortly for about 4 hrs on POD 3 but did not persist for 24 hrs after treatment. The withdrawal responses of the SMIR+LF TENS group significantly decreased yet immediate effects of allodynia recovered at different time points (p<0.05). After the week-long LF TENS period, mechanical hypersensitivity recovered immediately on the following week. Furthermore, the SMIR+LF TENS group reduced tactile allodynia on both sides when compared to the SMIR group (p<0.05). No significant changes of thermal hyperalgesia were exhibited among the three groups on the ipsilateral side, but the LF TENS treatment improved on the contralateral side comparing to the SMIR group (p<0.05).
Conclusions: The SMIR surgery exhibited pain hypersensitivities during the week-long course, but short-term allodynia and long-term hyperalgesia were experienced during the month-long course. LF TENS suppressed the progression of mechanical allodynia evoked by the SMIR surgery. Future implications are to analyze more about the LF TENS-analgesic effect for the long-term phase and employ this treatment strategy to alleviate the symptoms of persistent post-surgical pain.
Ainsworth, L., Budelier, K., Clinesmith, M., Fiedler, A., Landstrom, R., Leeper, B. J., . . . Sluka, K. A. (2006). Transcutaneous electrical nerve stimulation (TENS) reduces chronic hyperalgesia induced by muscle inflammation. Pain, 120(1-2), 182-187. doi:10.1016/j.pain.2005.10.030
Aloe, L., & Manni, L. (2009). Low-frequency electro-acupuncture reduces the nociceptive response and the pain mediator enhancement induced by nerve growth factor. Neurosci Lett, 449(3), 173-177. doi:10.1016/j.neulet.2008.11.003
Asato, F., Butler, M., Blomsberg, H., & Gordh, T. (2000). Variation in rat sciatic nerve anatomy: implications for a rat model of neuropathic pain. Journal of the Peripheral Nervous System, 5, 19-21.
Bajrovic, F., & Sketelj, J. (1998). Extent of nociceptive dermatomes in adult rats is not primarily maintained by axonal competition. Experimental Neurology, 150, 115-121.
Baptista, A. F., Gomes, J. R. S., Oliveira, J. T., Santos, S. M. G., Vannier-Santos, M. A., & Martinez, A. M. B. (2008). High- and low-frequency transcutaneous electrical nerve stimulation delay sciatic nerve regeneration after crush lesion in the mouse. Journal of the Peripheral Nervous System, 13, 71-80.
Baron, R. (2006). Mechanisms of disease: neuropathic pain--a clinical perspective. Nat Clin Pract Neurol, 2(2), 95-106. doi:10.1038/ncpneuro0113
Baron, R. (2009). Neuropathic pain: a clinical perspective. Handb Exp Pharmacol(194), 3-30. doi:10.1007/978-3-540-79090-7_1
Bilgili, A., Cakir, T., Dogan, S. K., Ercalik, T., Filiz, M. B., & Toraman, F. (2016). The effectiveness of transcutaneous electrical nerve stimulation in the management of patients with complex regional pain syndrome: A randomized, double-blinded, placebo-controlled prospective study. J Back Musculoskelet Rehabil. doi:10.3233/BMR-160667
Boada, M. D., Gutierrez, S., Giffear, K., Eisenach, J. C., & Ririe, D. G. (2012). Skin incision-induced receptive field responses of mechanosensitive peripheral neurons are developmentally regulated in the rat. J Neurophysiol, 108(4), 1122-1129. doi:10.1152/jn.00399.2012
Brennan, T. J., Vandermeulen, E. P., & Gebhart, G. F. (1996). Characterization of rat model of incisional pain. Pain, 64, 493-501.
Buvanendran, A., Kroin, J. S., Kerns, J. M., Nagalla, S. N., & Tuman, K. J. (2004). Characterization of a new animal model for evaluation of persistent postthoracotomy pain. Anesth Analg, 99(5), 1453-1460; table of contents. doi:10.1213/01.ANE.0000134806.61887.0D
Cao, S., Qin, Y., Chen, J., & Shen, S. (2015). Effects of pinacidil on changes to the microenvironment around the incision site, of a skin/muscle incision and retraction, in a rat model of postoperative pain. Mol Med Rep, 12(1), 829-836. doi:10.3892/mmr.2015.3465
Celik, E. C., Erhan, B., Gunduz, B., & Lakse, E. (2013). The effect of low-frequency TENS in the treatment of neuropathic pain in patients with spinal cord injury. Spinal Cord, 51(4), 334-337. doi:10.1038/sc.2012.159
Chandran, P., & Sluka, K. A. (2003). Development of opioid tolerance with repeated transcutaneous electrical nerve stimulation administration. Pain, 102(1), 195-201. doi:10.1016/s0304-3959(02)00381-0
Cheing, G. L., & Luk, M. L. (2005). Transcutaneous electrical nerve stimulation for neuropathic pain. J Hand Surg Br, 30(1), 50-55. doi:10.1016/j.jhsb.2004.08.007
Chen, C. C., & Johnson, M. I. (2010). An investigation into the hypoalgesic effects of high- and low-frequency transcutaneous electrical nerve stimulation (TENS) on experimentally-induced blunt pressure pain in healthy human participants. J Pain, 11(1), 53-61. doi:10.1016/j.jpain.2009.05.008
Chen, H., Jiang, Y. S., Sun, Y., & Xiong, Y. C. (2015). p38 and interleukin-1 beta pathway via toll-like receptor 4 contributed to the skin and muscle incision and retraction-induced allodynia. J Surg Res, 197(2), 339-347. doi:10.1016/j.jss.2015.04.061
Chen, Y. W., Tzeng, J. I., Lin, M. F., Hung, C. H., Hsieh, P. L., & Wang, J. J. (2014). High-frequency transcutaneous electrical nerve stimulation attenuates postsurgical pain and inhibits excess substance P in rat dorsal root ganglion. Reg Anesth Pain Med, 39(4), 322-328. doi:10.1097/AAP.0000000000000091
Chen, Y. W., Tzeng, J. I., Lin, M. F., Hung, C. H., & Wang, J. J. (2015). Transcutaneous electrical nerve stimulation attenuates postsurgical allodynia and suppresses spinal substance P and proinflammatory cytokine release in rats. Phys Ther, 95(1), 76-85. doi:10.2522/ptj.20130306
Cho, H. Y., Suh, H. R., & Han, H. C. (2014). A single trial of transcutaneous electrical nerve stimulation reduces chronic neuropathic pain following median nerve injury in rats. Tohoku J. Exp. Med., 232, 207-214.
D'Mello, R., & Dickenson, A. H. (2008). Spinal cord mechanisms of pain. Br J Anaesth, 101(1), 8-16. doi:10.1093/bja/aen088
Decosterd, I., & Woolf, C. J. (2000). Spared nerve injury: an animal model of persistent peripheral neuropathic pain. Pain, 87, 149-158.
DeSantana, J. M., Da Silva, L. F., De Resende, M. A., & Sluka, K. A. (2009). Transcutaneous electrical nerve stimulation at both high and low frequencies activates ventrolateral periaqueductal grey to decrease mechanical hyperalgesia in arthritic rats. Neuroscience, 163(4), 1233-1241. doi:10.1016/j.neuroscience.2009.06.056
DeSantana, J. M., Walsh, D. M., Vance, C., Rakel, B. A., & Sluka, K. A. (2008). Effectiveness of transcutaneous electrical nerve stimulation for treatment of hyperalgesia and pain. Curr Rheumatol Rep, 10(6), 492-499.
Duarte, A. M., Pospisilova, E., Reilly, E., Mujenda, F., Hamaya, Y., & Strichartz, G. R. (2005). Reduction of postincisional allodynia by subcutaneous bupivacaine. Anesthesiology, 103, 113-125.
Fang, J. F., Liang, Y., Du, J. Y., & Fang, J. Q. (2013). Transcutaneous electrical nerve stimulation attenuates CFA-induced hyperalgesia and inhibits spinal ERK1/2-COX-2 pathway activation in rats. BMC Complementary and Alternative Medicine, 13(134), 1-8.
Flatters, S. J. (2008). Characterization of a model of persistent postoperative pain evoked by skin/muscle incision and retraction (SMIR). Pain, 135(1-2), 119-130. doi:10.1016/j.pain.2007.05.013
Flatters, S. J. (2010). Effect of analgesic standards on persistent postoperative pain evoked by skin/muscle incision and retraction (SMIR). Neurosci Lett, 477(1), 43-47. doi:10.1016/j.neulet.2010.04.033
Gopalkrishnan, P., & Sluka, K. A. (2000). Effect of varying frequency, intensity, and pulse duration of transcutaneous electrical nerve stimulation on primary hyperalgesia in inflamed rats. Arch Phys Med Rehabil, 81(7), 984-990. doi:10.1053/apmr.2000.5576
Goroszeniuk, T., & Pang, D. (2014). Peripheral neuromodulation: a review. Curr Pain Headache Rep, 18(5), 412. doi:10.1007/s11916-014-0412-9
Gurgen, S. G., Sayin, O., Cetin, F., & Tuc Yucel, A. (2014). Transcutaneous electrical nerve stimulation (TENS) accelerates cutaneous wound healing and inhibits pro-inflammatory cytokines. Inflammation, 37(3), 775-784. doi:10.1007/s10753-013-9796-7
Harned, M., & Sloan, P. (2016). Safety concerns with long-term opioid use. Expert Opin Drug Saf, 1-8. doi:10.1080/14740338.2016.1177509
Huang, X., Deng, R., Tu, W., & Hu, Z. (2016). Dexmedetomidine reduces neuropathic pain in a rat model of skin/muscle incision and retraction. Asian J Surg. doi:10.1016/j.asjsur.2015.10.009
Hulse, R. P. (2016). Identification of mechano-sensitive C fibre sensitization and contribution to nerve injury-induced mechanical hyperalgesia. Eur J Pain, 20(4), 615-625. doi:10.1002/ejp.779
Hwang, B. G., B., M., Kim, J. H., Na, H. S., & Park, D. S. (2002). Effects of electroacupunture on the mechanical allodynia in the rat model of neuropathic pain. Neurosci Lett, 320, 49-52.
Inoue, T., Takenoshita, M., Shibata, M., Nishimura, M., Sakaue, G., Shibata, S. C., & Mashimo, T. (2003). Long-lasting effect of transcutaneous electrical nerve stimulation on the thermal hyperalgesia in the rat model of peripheral neuropathy. Journal of the Neurological Sciences, 211(1-2), 43-47. doi:10.1016/s0022-510x(03)00038-8
Kalra, A., Urban, M. O., & Sluka, K. A. (2001). Blockade of opioid receptors in rostral ventral medulla prevents antihyperalgesia produced by transcutaneous electrical nerve stimulation (TENS). Journal of Pharmacology and Experimental Therapeutics, 298(1), 257-263.
Kehlet, H., Jensen, T. S., & Woolf, C. J. (2006). Persistent postsurgical pain: risk factors and prevention. The Lancet, 367(9522), 1618-1625. doi:10.1016/s0140-6736(06)68700-x
Kerai, S., Saxena, K. N., Taneja, B., & Sehrawat, L. (2014). Role of transcutaneous electrical nerve stimulation in post-operative analgesia. Indian J Anaesth, 58(4), 388-393. doi:10.4103/0019-5049.138966
Kilinc, M., Livanelioglu, A., Yildirim, S. A., & Tan, E. (2014). Effects of transcutaneous electrical nerve stimulation in patients with peripheral and central neuropathic pain. J Rehabil Med, 46(5), 454-460. doi:10.2340/16501977-1271
King, E. W., & Sluka, K. A. (2001). The effect of varying frequency and intensity of transcutaneous electrical nerve stimulation on secondary mechanical hyperalgesia in an animal model of inflammation. J Pain, 2(2), 128-133. doi:10.1054/jpai.2001.19963
Krames, E. S. (2015). The dorsal root ganglion in chronic pain and as a target for neuromodulation: a review. Neuromodulation, 18(1), 24-32. doi:10.1111/ner.12247
Leong, M. L., Speltz, R., & Wessendorf, M. (2016). Effects of chronic constriction injury and spared nerve injury, two models of neuropathic pain, on the numbers of neurons and glia in the rostral ventromedial medulla. Neurosci Lett, 617, 82-87. doi:10.1016/j.neulet.2016.02.006
Leung, A., Shukla, S., Lee, J., Metzger-Smith, V., He, Y., Chen, J., & Golshan, S. (2015). Effect of low frequency transcutaneous magnetic stimulation on sensory and motor transmission. Bioelectromagnetics, 36(6), 410-419. doi:10.1002/bem.21921
Lin, H. T., Chiu, C. C., Wang, J. J., Hung, C. H., & Chen, Y. W. (2015). High frequency transcutaneous electrical nerve stimulation with diphenidol administration results in an additive antiallodynic effect in rats following chronic constriction injury. Neurosci Lett, 589, 62-66. doi:10.1016/j.neulet.2015.01.026
Matsuo, H., Uchida, K., Nakajima, H., Guerrero, A. R., Watanabe, S., Takeura, N., . . . Baba, H. (2014). Early transcutaneous electrical nerve stimulation reduces hyperalgesia and decreases activation of spinal glial cells in mice with neuropathic pain. Pain, 155(9), 1888-1901. doi:10.1016/j.pain.2014.06.022
Melzack, R., & Wall, P. D. (1965). Pain mechanisms: a new theory. Science, 150(3699), 971-979.
Mendlik, M. T., & Uritsky, T. J. (2015). Treatment of Neuropathic Pain. Curr Treat Options Neurol, 17(12), 50. doi:10.1007/s11940-015-0381-2
Nishimura, W., Muratani, T., Tatsumi, S., Sakimura, K., Mishina, M., Minami, T., & Ito, S. (2004). Characterization of N-methyl-D-aspartate receptor subunits responsible for postoperative pain. Eur J Pharmacol, 503(1-3), 71-75. doi:10.1016/j.ejphar.2004.09.033
Ozaktay, A. C., Kallakuri, S., Takebayashi, T., Cavanaugh, J. M., Asik, I., DeLeo, J. A., & Weinstein, J. N. (2006). Effects of interleukin-1 beta, interleukin-6, and tumor necrosis factor on sensitivity of dorsal root ganglion and peripheral receptive fields in rats. Eur Spine J, 15(10), 1529-1537. doi:10.1007/s00586-005-0058-8
Papuc, E., & Rejdak, K. (2013). The role of neurostimulation in the treatment of neuropathic pain. Ann Agric Environ Med(1), 14-17.
Perkins, F. M., & Kehlet, H. (2000). Chronic pain as an outcome of surgery: a review of predictive factors. Anesthesiology, 93, 1123-1133.
Pogatski, E. M., Niemeier, J. S., & Brennan, T. J. (2002). Persistent secondary hyperalgesia after gastrocnemius incision in the rat. European Journal of Pain, 6, 295-305.
Resende, M. A., Sabino, G. G., Candido, C. R., Pereira, L. S., & Francischi, J. N. (2004). Local transcutaneous electrical stimulation (TENS) effects in experimental inflammatory edema and pain. Eur J Pharmacol, 504(3), 217-222. doi:10.1016/j.ejphar.2004.09.055
Sabino, G. S., Santos, C. M., Francischi, J. N., & de Resende, M. A. (2008). Release of endogenous opioids following transcutaneous electric nerve stimulation in an experimental model of acute inflammatory pain. J Pain, 9(2), 157-163. doi:10.1016/j.jpain.2007.09.003
Sato, K. L., Johanek, L. M., Sanada, L. S., & Sluka, K. A. (2014). Spinal cord stimulation reduces mechanical hyperalgesia and glial cell activation in animals with neuropathic pain. Anesth Analg, 118(2), 464-472. doi:10.1213/ANE.0000000000000047
Shen, Y., Xu, L., Liu, M., Lei, Y., Gu, X., & Ma, Z. (2016). The effects of an intraperitoneal single low dose of ketamine in attenuating the postoperative skin/muscle incision and retraction-induced pain related to the inhibition of N-methyl-d-aspartate receptors in the spinal cord. Neurosci Lett, 616, 211-217. doi:10.1016/j.neulet.2015.12.045
Sluka, K. A. (2000). Systemic morphine in combination with TENS produces an increased antihyperalgesia in rats with acute inflammation. J Pain, 1(3), 204-211. doi:10.1054/jpai.2000.7149
Sluka, K. A., Bailey, K., Bogush, J., Olson, R., & Ricketts, A. (1998). Treatment with either high or low frequency TENS reduces the secondary hyperalgesia observed after injection of kaolin and carrageenan into the knee joint. Pain, 77, 97-102.
Sluka, K. A., Christy, M. R., Peterson, W. L., Rudd, S. L., & Troy, S. M. (1999). Reduction of pain-related behaviors with either cold or heat treatment in an animal model of acute arthritis. Arch Phys Med Rehabil, 80, 313-317.
Sluka, K. A., Deacon, M., Stibal, A., Strissel, S., & Terpstra, A. (1999). Spinal blockade of opioid receptors prevents the analgesia produced by TENS in arthritic rats. The Journal of Pharmacology and Experimental Therapeutics, 289(2), 840-846.
Sluka, K. A., Judge, M. A., McColley, M. M., Reveiz, P. M., & Taylor, B. M. (2000). Low frequency TENS is less effective than high frequency TENS at reducing inflammation-induced hyperalgesia in morphine-tolerant rats. Eur J Pain, 4(2), 185-193. doi:10.1053/eujp.2000.0172
Sluka, K. A., & Walsh, D. (2003). Transcutaneous electrical nerve stimulation: Basic science mechanisms and clinical effectiveness. The Journal of Pain, 4(3), 109-121. doi:10.1054/jpai.2003.434
Somers, D. C., R. (1998). High-frequency transcutaneous electrical nerve stimulation alters thermal but not mechanical alloydnia following chronic constriction injury of the rat sciatic nerve. Arch Phys Med Rehabil, 79, 1370-1376.
Somers, D. C., R. (2003). The relationship between dorsal horn neurotransmitter content and allodynia in neuropathic rats treated with high-frequency transcutaneous electric nerve stimulation. Arch Phys Med Rehabil
84, 1575-1583. doi:10.1016/s0003-9993(03)00290-9
Somers, D. C., R. (2006). Transcutaneous electrical nerve stimulation for the management of neuropathic pain: the effects of frequency and electrode position on prevention of allodynia in a rat model of complex regional pain syndrome type II. Phys Ther, 86
(5), 698-709.
Somers, D. L., & Clemente, F. R. (2009). Contralateral high or a combination of high- and low-frequency transcutaneous electrical nerve stimulation reduces mechanical allodynia and alters dorsal horn neurotransmitter content in neuropathic rats. J Pain, 10(2), 221-229. doi:10.1016/j.jpain.2008.08.008
Somers, D. L., & Somers, M. F. (1999). Treatment of neuropathic pain in a patient with diabetic neuropathy using transcutaneous electrical nerve stimulation applied to the skin of the lumbar region. Phys Ther, 79, 767-775.
Sommer, C., & Kress, M. (2004). Recent findings on how proinflammatory cytokines cause pain: peripheral mechanisms in inflammatory and neuropathic hyperalgesia. Neurosci Lett, 361(1-3), 184-187. doi:10.1016/j.neulet.2003.12.007
Steyaert, A., & De Kock, M. (2012). Chronic postsurgical pain. Curr Opin Anaesthesiol, 25(5), 584-588. doi:10.1097/ACO.0b013e32835743b7
Strichartz, G. R., Khodorova, A., Wang, J. C., Chen, Y. W., & Huang, C. C. (2015). Contralateral Hyperalgesia from Injection of Endothelin-1 into the Ipsilateral Paw Requires Efferent Conduction into the Contralateral Paw. Anesth Analg, 121(4), 1065-1077. doi:10.1213/ANE.0000000000000858
Sun, Y., Yang, M., Tang, H., Ma, Z., Liang, Y., & Li, Z. (2015). The over-production of TNF-alpha via Toll-like receptor 4 in spinal dorsal horn contributes to the chronic postsurgical pain in rat. J Anesth. doi:10.1007/s00540-015-2011-2
Vance, C., Radhakrishnan, R., Skyba, D. A., & Sluka, K. A. (2007). Transcutaneous electrical nerve stimulation at both high and low frequencies reduces primary hyperalgesia in rats with joint inflammation in a time-dependent manner. Phys Ther, 87(1), 44-51.
Woolf, C. J., Allchorne, A., Safieh-Garabedian, B., & Poole, S. (1997). Cytokines, nerve growth factor and inflammatory hyperalgesia: the contribution of tumour necrosis factor a. British Journal of Pharmacology, 121, 417-424.
Ying, Y. L., Wei, X. H., Xu, X. B., She, S. Z., Zhou, L. J., Lv, J., . . . Liu, X. G. (2014). Over-expression of P2X7 receptors in spinal glial cells contributes to the development of chronic postsurgical pain induced by skin/muscle incision and retraction (SMIR) in rats. Exp Neurol, 261, 836-843. doi:10.1016/j.expneurol.2014.09.007
Zahn, P., Pogatzki, E., & Brennan, T. (2002). Mechanisms for pain caused by incisions. Regional Anesthesia and Pain Medicine, 27(5), 514-516. doi:10.1053/rapm.2002.35155
Zhuo, M., Wu, G., & Wu, L. J. (2011). Neuronal and microglial mechanisms of neuropathic pain. Mol Brain, 4, 31. doi:10.1186/1756-6606-4-31