| 研究生: |
陳沛桓 Chen, Pei-hwung |
|---|---|
| 論文名稱: |
染敏性太陽能電極製備及系統效率提升之研究 Development of Self-Assembled Electrodes for Efficiency Enhancement of Dye Sensitive Solar Cell Systems |
| 指導教授: |
賴新一
Lai, Hsin-Yi |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 190 |
| 中文關鍵詞: | 布朗動力學 、多孔性薄膜電極 、染料敏化太陽能電池 |
| 外文關鍵詞: | Dye Sensitive Solar Cell, porous electrodes |
| 相關次數: | 點閱:73 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
現今對於太陽能電池的應用,非晶矽太陽能電池因其於日光照射下具有嚴重的光腐蝕,效率不佳,一般只能應用在室內。而結晶矽太陽能電池於近年來,發展效率已逐漸達到極限,並因為製程複雜、成本昂貴而難以大規模應用。而染料敏化太陽能電池使用光激發染料敏化太陽能電池中之多孔性半導體薄膜電極,將對太陽光之吸收光譜延伸至可見光及紅外光區,相對於結晶矽太陽能電池,其成本簡單的製作工藝,成本低、低污染、適合大規模應用,性能穩定及抗腐蝕性良好,高溫下性能穩定,對光線入射角度要求低,於低角度仍具良好電池性能,在未來極具發展的潛力。而傳統上利用溶膠凝膠法製作染料敏化太陽能電池多孔性薄膜電極時,在製程中需要一個500~600度之熱分解有機物過程,使得對大面積導電玻璃鍍膜受到限制,因此若能以粉末塗敷的方法進行多孔性薄膜電極成形,並且徹底掌握製作過程中之控制參數,控制多孔性薄膜電極結構,並有效增加染敏性太陽能電池之效率,將可使未來大規模的應用得到突破。
因此,本研究擬對於粉末塗敷法成形多孔性薄膜電極的過程,以布朗動力學理論建構出多孔性薄膜成形理論,模擬膠體溶液中成形多孔性薄膜之乾燥過程,並建立系統之作用勢能及完成多孔性薄膜成形之模擬系統。配合對於薄膜結構估算薄膜空孔度及粒子之配位數等電極薄膜結構參數,對於模擬系統中之重要因子進行設計模擬實驗,找出於多孔性薄膜成形過程中,找出顯著參數因子及顯著交互作用項,並建構顯著因子之迴歸模型。同時以實驗設計之結果結合染料敏化太陽能電池光電轉換效率估算模型,以成形薄膜電極之結構,進行電極效率的估算,並與文獻比對驗證本文之正確性及可行性。最後再將顯著因子對光電轉換效率的結果模型化,以系統化方式對於顯著之參數因子進行調控並估算效率,以設計之流程達成染料敏化太陽能的提升,並建立應用實例證明本研究的實用性。
在本文之研究中,以布朗動力進行電極成形之模型建構,對於製程參數中加入粒子間側向之毛細吸附力的影響,並透過側向毛細力貢獻度之分析,證明納入之側向毛細力確實顯著並確實提升了多孔性薄膜成形模擬之正確性。同時以實驗設計的方法,分別探討電極結構與製程對效率影響,建立電極結構對效率因子交互作用之理論模型。接著整合電極成形與效率估算兩實驗設計模型進行製程對效率估算,與文獻實驗比對結果,相較於傳統理論線性模型,納入側向毛細力含交互作用項之實驗設計模型可將電池效率估算誤差由15.78%減少2.24%。最後經由文獻比對證明本文之正確性後,以多孔性薄膜電極結構的設計進行應用實例之設計規劃,經由最佳結構及最佳製程參數搜尋的結果,提出最佳之多孔性薄膜電極之結構,使多孔性薄膜電極之設計能有效快速地找出最佳薄膜結構之製程參數,在本文的設計流程下對最佳製程參數搜尋結果,可使原先文獻中使用black dye染料下,最佳光電轉換效率由原先10.4%大幅提昇至12.45%,使未來能有用地做為染料敏化太陽能電池多孔性電極最佳化製程之參考。
Amorphous Silicon Solar Cells have detrimental light corrosiveness on sunlight in the application of solar cells and low efficiency, so only can be used indoors. In recent years, efficiency in Crystal-Si Solar Cell have gradually reached limit, and because with its complication of manufacture and expensive cost, it is difficult for further to be extensive application. In light exciting dyes, the porous semiconductor electrode of Dye Sensitive Solar Cell can be extented to the absorption spectrum of the sunlight to the visible light and infrared light area. By comparing with the crystallization silicon solar cell, it is simpler to manufacture with lower costs, low pollution, and is suitable for extensive application, stable performance and good resisting corrosiveness, and it’s performance is stable under high temperature, require the low light incidence angle, and still have performance of good batteries on the low angle, so have good potential of development in the future. In tradition we used sol-gel method to manufacture the porous electrode of dye sensitive solar cell, and in this manufacturing process we needed a thermal decomposition of the organic matter in 500-600℃ to limit the large area of the conductive glass membrane. Therefore, if we can use the powder coating method to make the porous electrode and totally have control of the parameters in producing and the structure of the porous electrodes to increase the efficiency of dye sensitive solar cells, these extensive applications of dye sensitive solar cells can be a huge break through in the future.
Therefore, in this research we use Brown dynamics theory to establish the theory for forming porous membranes, simulate the drying process of these membranes in the colloid solution, and establish the working potential energy and the simulating system in the process of forming porous electrodes by using the powder coating method. Coordinating with those parameters of the structure of membranes in electrodes like the structure of membranes to estimate the degree of porosity and the coordination number of particles, etc, we will design the simulation for the important factors in systems to find out the noticeable factors and reciprocation terms and establish the return model of noticeable factors. At the same time, we take the structure of membranes to estimate the efficiency of electrodes by using the results of experimental designs combining with the estimating efficient model of the photoelectric conversion of dye sensitive solar cells, and compare with the literatures to prove the correctness and practicability. Finally, we model the results and control the noticeable parameters to estimate the efficiency systematically by the designing procedures to reach the requirement, and take an example to prove the model practicability.
In this research, we use Brown dynamics to establish the model of the formation of electrodes, and join the effect of side capillary forces between those particles. By the analysis of side capillary forces, we prove that side capillary forces effect observably and this result raises the correctness of simulations of forming porous membranes. At the same time, we use the experimental design method to discuss the effects of the electrode structure and the procedures to the efficiency dividedly, and establish the theoretical model of the electrode structure to reciprocations of the efficient factors. Then integrating the experimental design model of the electrode formation and the estimating efficiency to estimate efficiency and comparing with literatures, different from the traditional linear model, the experimental design model that taking in the side capillary forces including reciprocation terms can reduce the error from 15.78% to 2.24%. Finally after comparing with literatures to prove the correctness in this research, we design an example in application by this structure of porous electrode membranes. With searching results of the optimum structure and parameters in procedures in our experimental design, we can bring up an optimum structure of the porous electrode membrane to find out the best producing parameters quickly. In my design procedure, as using the same black dye in references, the optimum parameters can make the best photoelectric conversion efficiency raise from 10.4% to 12.45% largely, so this research is helpful to be the reference of optimal procedures of porous electrode in Dye Sensitive Solar Cells in the future.
1. Amsterdam, T., NetherlandsTien, C., 1989, Granular Filtration of Aerosols and Hydrosols, Butterworths, BOSTON. 2. Bernstein, K.D., Kopidakis, N., van de Lagemaat, J., and Frank, A.J. 2003, “Influence of the Percolation Network Geometry on Electron Transport in Dye-Sensitized Titanium Dioxide Solar Cells,” J. Phys. Chem. B, Vol. 107, pp. 7759-7767. 3. Dai, S. Y., Wang, K. J., and Wu, Q.C., et al., 1997, “Investigation of Nanocrystaline Photoelectrochernical Cell,” Chin. J. Acta Energy Solaris Sinica, Vol. 18, pp. 228-232. 4. Derjaguin, B. V., and Landua, L., 1941, “Theory of the Stability of Strongly Charged Lyophobic Sols and of the Adhesion of Strongly Charged Particles in Solution of Electrolytes,” Acta. Physiochim, Vol. 14, pp. 633-642. 5. Ferber, J., Stangl, R., and Luther, J., 1998, “An Electrical Model of the Dye-Sensitized Solar Cell,” Solar Energy Materials and Solar Cells, Vol. 53, pp. 29-54. 6. Ferber, J., Stangl, R., and Luther, J., 1998, “Computer Simulations of Light Scattering and Absorpyion in Dye-Sensitized Solar Cells,”
166Solar Energy Materials and Solar Cells, Vol. 54, pp. 265-275. 7. Fujita, M., and Yamaguchi, Y., 2007, “Simulation of 3D Crystallization of Colloidal Nanoparticle on a Substrate During Drying,” Intern. Polymer Processing, Vol. 1, pp. 16-21. 8. Fredin, K., Nissfolk, J., and Hagfeldt, A., 2005, “Brownian Dynamics Simulations of Electrons and Ions in Mesoporous Films,” Sol. Energy Mater. Sol. Cells, Vol. 86, pp. 283-297. 9. Gómez, R., and Salvador, P., 2005, “Photovoltage Dependence on Film Thickness and Type of Illumination in Nanoporous Thin Film Electrodes According to a Simple Diffusion Model,” Solar Energy Materials and Solar Cells, Vol. 88, pp. 377-388. 10. Grätzel, M., and O’Regan, B., 1991, “A Low-Cost, High-Efficiency Solar Cell Based on Dye-Sensitized Colloidal TiO2 Films,” Nature, Vol.353, pp. 737-740. 11. Grätzel, M., Nazeeruddin, M.K., Pecky, P., Renouard, T., Zakeeruddin, R.H., Liska P., Cevey L., Costa, E., Shklover, V., Spiccia, L., Deacon, G.B., and Bignozzi, C.A., 2004, “Engineering of Efficient Panchromatic Sensitizers for Nanicrystalline TiO2-based Solar Cells,” Journal American Chemical Society, Vol. 123, pp.
1671613-1624. 12. Gomez, R., and Salvador, P., 2005, “Photovoltage Dependence on Film Thickness and Type of Illumination in Nanoporous Thin Electrodes According to a Simple Diffution Model,” Sol. Energy Mater.sol. cells, Vol. 88, pp. 377-381. 13. Hao, S., Wu, J., Fan, L, Huang, Y., Lin, J., Wei, Y., 2004, “The Influence of Acid Treatment of TiO2 Porous Film Electrode on Photoelectric Performance of Dye-Sensitized Solar Cell,” Solar Energy, Vol. 76, pp. 745–750. 14. Huang, C.Y., Hsu, Y.C., Chen, J.G., Suryanarayanan, V., Lee, K.M., and Ho, K.C., 2006, “The Effects of Hydrothermal Temperature and Thickness of TiO2 Film on the Performance of a Dye-Sensitized Solar Cell,” Solar Energy Materials and Solar Cells, Vol. 90, pp. 2391-2397. 15. Hong, C.W., 1998, “From Long-Range Interaction to Solid-Body Contact Between Colloidal Surfaces During Forming,” J. Euro. Ceramic Society, Vol. 18, pp. 2159-2167. 16. Koo, H.J., Park, J., Yoo, B., Yoo, K., Kim, K., and Park, N.G., 2007, “Size-Dependent Scattering Efficiency in Dye-Sensitized Solar
168Cell,” Korea Institude of Science and Technology, Vol. 63, pp. 307-313. 17. Lagement, J.V.D., Benkstein, K.D., and Frank, A.J, 2001, “Relation Between Particle Coordination Number and Porosity in Nanoparticle Films: Implication to Dye-Sensitized Solar Cells,” J. Physical Chem., Vol. 105, pp. 50-53. 18. Leong, Y.K., and Ong, B.C., 2003, “Critical Zeta Potential and the Hamaker constant of Oxides in Water,” Powder Technology, Vol. 134, pp. 249-254. 19. Mädler, L., Lall, A.A., and Friedlander, S.K., 2006, “One-Step Aerosol Synthesis of Nanoparticle Agglomerate Films: Simulation of Film Porosity and Thickness,” Nanotechnology, Vol. 17, pp. 4783-4795. 20. Maenosono, S., Dushkin, C.D., Yamaguchi, Y., Nagayama, K., and Tsuji, Y., 1999, “Effectof Growth Conditions on the Structure of Two-Dimentional Latex Crystals: Modeling,” Colloid Polym. Sci., Vol. 277, pp. 1152-1161. 21. Masahiro, F., and Yukio, Y., 2006, “Development of Three-Dimensional Structure Formation Simulator of Colloidal
169Nanoparticles During Drying,” Journal of Chemical Engineering of Japan, Vol. 39, pp. 83-89. 22. Ni, M., Leung, M.K.H., Leung, D.U.C., and Sumathy, K., 2006, “An Analytical Study of the Porosity Effect on Dye-Sensitized Solar Cell Performance,” Solar Energy materials and Solar Cells, Vol. 90, pp.1331-1344. 23. Nokki, S., Kallioinen, J., Kololuoma, T.,Tuboltsev, V., and K-Tommola, J., 2006, “Dynamic Preparation of TiO2 Film for fabrication of dye-sensitizd solar cells,” Journal of Photochemistry and Photobiology A, Vol. 182, pp. 187-191. 24. Oda, T., Tanaka, S., and Hayase, S., 2006, “Differences in characteristics of dye-sensitized solar cells containing acetonitrile and ionic liquid-based electrolytes studied using a novel model,” Solar Energy Materials and Solar Cells, Vol. 90, pp. 2696-2709. 25. Pavasupree, S., Ngamsinlapasathian, S., Nakajima, M., Suzuki, Y., and Yoshikawa, S., 2006, “Synthesis, characterization, Photocatalytic Activity and Dye-Sensitized Solar Cell Performance of Nanorods/Nanoparticles TiO2 with Mesoporous Structure,” Journal of photochemistry and Photobiology A, Vol. 184, pp.
170163-169. 26. Piwonski, I., 2006, “Preparation Method and Some Tribological Properties of Porous Titanium Dioxide Layers,” Thin Solid film, Vol. 515, pp. 3499-3508. 27. Södergren, S., Hagfeldt, H., Olsson, J., and Lundquist, S.E., 1994, “Theoretical Models for the Action Spectrum and Current-Voltage Characteristic of Microporous Semiconductor Films in Photoelectrochemical Cells,” Journal of Physical Chemistry, Vol. 98, pp. 5552-5567. 28. Stern, O., 1924, “Zur Theorie Der’elektrolytischem Doppelschicht,” Annals Electrochemical, Vol. 30, pp. 508-526. 29. Tsubomura, H., Matsumura, M., Nomura, Y., and Amamiya, T., 1976, “Dye Sensitised Zinc Oxide/Aqueous Electrolyte/Platinum Photocell,” Nature, Vol. 261, pp. 402-502. 30. Usami, A., 1997, “A New Theorical Model of a Dye-Sensitized Nanocrystalline Photoelectrochemical Cell,” Japanese Journal Applied Physics, Vol. 36, pp. 886-891. 31. Usami, A., 1998, “Theorical Study of Charge Transportation in Dye-Sensitized Nanocrystalline,” Chemical Physics Letters, Vol. 36,
171pp. 223-230. 32. Verway, E.J.W., and Overbeek, J.T.G., 1948, Theory of the Stability of Lyophobic Colloids, Elsevier. 33. Videcoq, A., Han, M., Abelard, P., Pagnoux, C., Rossignol, F., and Ferrando, R., 2006, “Influence of the Potential Range on the Aggregation of Colloidal Particles,” Physica A, Vol. 374, pp. 507-516. 34. Zhigang, C., Yiwen, T., Lisha, Z., and Lijuan, L., 2006, “Electro Deposited Nanoporous ZnO Films Exhibiting Enhanced Performance in Dye-Sensitized Solar Cells,” Electrochimica Acta, Vol. 51, pp. 5870-5875. 35. 黎正中、陳源樹,2006,實驗設計與分析,高立圖書公司。 36. 李振宇、簡郁紘、陳至安,2005,實驗設計,華泰文化事業股份有限公司。