簡易檢索 / 詳目顯示

研究生: 簡靖航
Chien, Ching-Hang
論文名稱: 霍爾推進器中帶電粒子運動狀態的蒙地卡羅法粒子網格模擬
PIC/ Monte Carlo Simulations for Hall Thruster Charged Particle Motion
指導教授: 談永頤
Tam, Sunny Wing-Yee
學位類別: 碩士
Master
系所名稱: 理學院 - 太空與電漿科學研究所
Institute of Space and Plasma Sciences
論文出版年: 2025
畢業學年度: 113
語文別: 英文
論文頁數: 101
中文關鍵詞: 霍爾推進器蒙地卡羅法粒子網格模擬蛙跳法
外文關鍵詞: Hall-effect Thruster, Monte Carlos method, Particle-in-Cell simulation, Leap frog method
相關次數: 點閱:32下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 霍爾推進器雖然早在 1960 年代就已被提出,直到 1990 年左右才真正被重視。經過多年的實驗測試,現已成為太空領域電力推進的主流。雖然大量的實驗證實了霍爾推進器的效率與優良的表現,但大多數近期的研究都是從航太工程的角度,以噴射推進為研究的基礎理論進行研究,研究內容主要探討電漿的穩定度或是推進器的壽命延續。本論文擇從電漿物理的角度,用蒙地卡法搭配粒子網格模擬的模擬技巧,針對電子、離子在磁場與電場中的運動行為進行模擬,透過瞭解粒子在電磁場中的分佈狀態以及運動行為,能有效理解不同電磁場與幾何結構的組合對中性粒子與帶電粒子的影響,進一步調整並提升推進器的效能。透過不同程式組合的搭配使用,能更快速的協助工程師進行霍爾推進器的分析與改良。
    粒子網格模擬被大量用在電漿模擬分析,在太空推進領域也十分常見,然而極大的運算量,時常造成設計時程上的困擾,因此本研究的另一個亮點是研究中使用的程式本身就是設計能在個人電腦上運作,以減少測試運算的時間,縮短設計時程。論文中也針對幾種推進器組合進行比較,找出表現較符合個人期望的組合。雖然從本文的觀點,目標是在高電場區域產生大量的離子,並減少對離子產生負加速度,但不同的推進器組合其實並沒有好與不好,設計者需根據任務需求選出最適合的組合。

    Although Hall thrusters were developed in the 1960s, they were not really valued until around 1990. After years of experimental testing, they have become the mainstream in the space propulsion system research. Although a large number of experiments have confirmed the efficiency and excellent performance of Hall thrusters, most recent studies have been based on the jet propulsion from aviation engineering. Researches mainly focus on the stability of plasma or the life extension of the thruster.
    In contrast, this thesis focuses on simulations of the motion of electrons and ions in magnetic fields and electric fields by using the Monte Carlo method combined with particle-in-cell simulation. With understanding of the distribution and motion of particles in the electromagnetic field, the interaction between charge particles and electromagnetic fields can be effectively simulated. This study may help engineers improve their designs. Different program combinations can help engineers optimize their Hall thrusters more quickly.
    Particle-in-cell simulations are widely used in plasma simulation analysis, and they are also very common in the simulation of space propulsion. However, the huge amount of computing often leads to lengthy design time. In contrast, the program used in this thesis can be operated on personal computers. To be more convenient, the simulation code is separated into different parts. This thesis also compares several thruster combinations to find out the case with the highest value of ions. Although the point of view in this thesis is to generate ions in high electric potential area and reduce deceleration for ions, different propeller combinations cannot really be rated as good or bad. Engineers should choose the most suitable combination according to the requirements of the mission.

    Chapter 1 Introduction 1 1.1 Space thruster 1 1.2 History of space thrusters 1 1.3 Different kinds of principle about propulsion 2 1.3.1 Electrostatic 2 1.3.2 Electrothermal 4 1.3.3 Electromagnetic 5 1.4 A Review of Electric Thrusters 8 Chapter 2 Hall Thruster Physics 9 2.1 Topology of Hall Thruster 9 2.2 Electric field 10 2.3 Magnetic field 12 2.4 Single Particle Motion 13 2.5 Collision of Electrons and Neutral Particles 14 2.6 Force for the thruster 16 Chapter 3 Numerical Simulation 18 3.1 Particle-In-Cell Simulation 18 3.2 Monte Carlo method 19 3.3 Electric Field for Simulation Background 19 3.4 Magnetic field for Simulation Background 22 3.5 Leap Frog 24 3.6 Neutral Particles 26 3.7 Electrons and Collision Generated Ions 28 Chapter 4 Results of Particle Simulation 31 4.1 Thrust 34 4.2 Ions 34 4.3 Electrons 37 4.4 Results of single ion 39 Chapter 5 Comparison of Results with Different Types of Setup 42 5.1 Background Setup for Case 2, Case 3 and Case 4 42 5.2 Quick Ion Acceleration Performance Test 46 5.2.1 Case 1 46 5.2.2 Case 2 52 5.2.3 Case 3 59 5.2.4 Case 4 65 5.3 Quick Electron Traveling Path Test 72 5.4 Thrust of the Thrusters 74 Chapter 6 Summary 78 6.1 Summary 78 6.2 Results 78 6.3 Future Work 79 References 80

    Arakawa, Y., & Sasoh, A. (1989). Steady-state permanent magnet magnetoplasmadynamic thruster. Journal of Propulsion and Power, 5(3), 301-304.

    Arefiev, A. V., & Breizman, B. N. (2004). Theoretical components of the VASIMR plasma propulsion concept. Physics of Plasmas, 11(5), 2942-2949.

    Arefiev, A. V., & Breizman, B. N. (2005). Magnetohydrodynamic scenario of plasma detachment in a magnetic nozzle. Physics of Plasmas, 12(4), 043504.1-043504.7.

    Auweter-Kurtz, M., Fertig, M., Petkow, D., Stindl, T., Quandt, M., Munz, C. D., ... & Schneider, R. (2005, October). Development of a hybrid PIC/DSMC code. In 29 th International Electric Propulsion Conference (pp. 1-15).

    Bauer, W. F. (1958). The Monte Carlo method. Journal of the Society for Industrial and Applied Mathematics, 6(4), 438-451.

    Brown, C. O., & Pinsley, E. A. (1965). Further experimental investigations of a cesium Hall-current accelerator. AIAA Journal, 3(5), 853-859.

    Burton, R. L., & Turchi, P. J. (1998). Pulsed plasma thruster. Journal of Propulsion and Power, 14(5), 716-735.

    Buneman, O. (1959). Dissipation of currents in ionized media. Physical Review, 115(3), 503.

    Cann, G. L., & Marlotte, G. L. (1964). Hall current plasma accelerator. AIAA Journal, 2(7), 1234-1241.

    Chen, F. F. (1984). Introduction to Plasma Physics and Controlled Fusion (Vol. 1, pp. 19-81 51). New York: Plenum press.

    Chhavi, C., & Walker, M. L. (2024). Review of non-conventional Hall effect thrusters. Journal of Electric Propulsion, 3(1), 11.

    Diamant, K. D., Liang, R., & Corey, R. L. (2014). The effect of background pressure on SPT-100 Hall thruster performance. In 50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference (p. 3710).

    Giannini, G. (1961). Electrical propulsion in space. Scientific American, 204(3), 57-65.

    Goto, C., Ogawa, Y., Shuto, N., & Imamura, F. (1997). Numerical method of tsunami simulation with the leap-frog scheme. IOC Manuals and Guides, 35, 130.

    Guman, W. J. (1967). Electric propulsion activities outside of the United States. Journal of Spacecraft and Rockets, 4(11), 1424-1430.

    Hofer, R., Goebel, D., Mikellides, I., & Katz, I. (2012, July). Design of a laboratory Hall thruster with magnetically shielded channel walls, phase II: Experiments. In 48th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit (p. 3788).

    Hofer, R. R., Mikellides, I. G., Katz, I., & Goebel, D. M. (2007, September). BPT-4000 Hall thruster discharge chamber erosion model comparison with qualification life test data. In 30th International Electric Propulsion Conference (pp. 17-20).

    Iserles, A. (1986). Generalized leapfrog methods. IMA Journal of Numerical Analysis, 6(4), 381-392.

    Leomanni, M. (2015). Attitude and orbit control techniques for spacecraft with electric propulsion (Doctoral dissertation, Ph. D. Dissertation, Dept. of Information Engineering and Mathematics, Univ. of Siena, Siena, Italy).

    Lozano, P., Martinez-Sanchez, M., & Lopez-Urdiales, J. M. (2004, October). Externally wetted ionic liquid thruster. In 4th International Spacecraft Propulsion Conference (Vol. 555), 36.1-36.6.

    MacDonald-Tenenbaum, N., Pratt, Q., Nakles, M., Pilgram, N., Holmes, M., & Hargus Jr, W. (2019). Background pressure effects on ion velocity distributions in an SPT- 100 Hall thruster. Journal of Propulsion and Power, 35(2), 403-412.

    Matthews, A. P. (1994). Current advance method and cyclic leapfrog for 2D multispecies hybrid plasma simulations. Journal of Computational Physics, 112(1), 102-116.

    Metropolis, N., & Ulam, S. (1949). The Monte Carlo method. Journal of the American Statistical Association, 44(247), 335-341.

    Pugh, E. M., & Pugh, E. W. (1960). Principles of Electricity and Magnetism, 2nd Edition (Addison-Wesley).

    Sankovic, J. M., Hamley, J. A., & Haag, T. W. (1994, January). Performance evaluation of the Russian SPT-100 thruster at NASA LeRC. In IEPC Conference (No. IEPC- 93-094).

    Scharlemann, C., Genovese, A., Buldrini, N., Schnitzer, R., Tajmar, M., Früholz, H., & Killinger, R. (2007, September). Status of the indium FEEP micropropulsion subsystem development for LISA pathfinder. In Proceedings of the International Electric Propulsion Conference (IEPC’07), 122.

    Tskhakaya, D., Matyash, K., Schneider, R., & Taccogna, F. (2007). The particle‐in‐cell method. Contributions to Plasma Physics, 47(8‐9), 563-594.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE