簡易檢索 / 詳目顯示

研究生: 吳宜軒
Wu, Yi-Syuan
論文名稱: 使用預載曲樑設計直線式變勁度機構
Design of Linear Variable-Stiffness Mechanisms Using Preloaded Curved Beams
指導教授: 藍兆杰
Lan, Chao-Chieh
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 100
中文關鍵詞: 變勁度被動撓性曲樑零勁度撓性機構
外文關鍵詞: Variable stiffness, passive compliance, curved beam, zero stiffness, compliance mechanism
相關次數: 點閱:132下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於機器在工作環境之適應性需求增加,因此相較於只具一固定勁度之機器,具可變勁度者是更好的選擇。因為在文獻中的變勁度機構大多為旋轉式,因此本論文以預載法設計一新型直線式變勁度機構,其設計概念為並聯兩側向曲樑及一軸向彈簧,並透過施於曲樑之預載調整,使其輸出之力量-位移曲線的勁度不同。而所提出之直線式變勁度機構的優點在於機構可在一緊密之空間中達成大勁度可調度,除了達成勁度可調外,此設計與其他設計不同處在於可藉由搭配適當勁度之軸向彈簧,使機構勁度可調整至零勁度。而為了不失一般性,本論文探討曲樑兩端在旋轉接頭及固定之邊界條件下的影響。另外,為了在具有足夠之線性度的情況下達到最大的勁度可調度,本論文討論給定參數對機構特性的影響。而本文也介紹如何縮放機構尺寸及改變機構之平衡位置,以增加此設計之用途。最後,藉由實驗驗證所提出之設計概念。

    Due to the increasing demand on the adaptability in working environments, a machine with a variable stiffness is preferable to that with a constant stiffness. Because variable-stiffness mechanisms found in the literature are mostly rotary type. This thesis presents the design of a class of novel linear variable-stiffness mechanisms (LVSMs). The idea is to parallel connect two lateral curved beams with an axial spring. Through preload adjustment of the curved beams, the output force-to-displacement curves can exhibit different stiffness. The merit of the proposed LVSMs is that large stiffness variation can be achieved in a compact space. In addition to achieving variable stiffness, the presented work differs from previous ones is that the stiffness can be tuned to zero by assigning a proper stiffness to the axial spring. Without loss of generality, this thesis investigates curved beams with pinned and fixed boundary conditions. To achieve the largest stiffness variation with sufficient linearity, the effects of various parameters are discussed. Techniques to scale an LVSM and change the equilibrium position are introduced to enhance the usefulness of the proposed design. Finally, the presented design concepts are experimentally verified through prototypes.

    摘要 I Design of Linear Variable-Stiffness Mechanisms Using Preloaded Curved Beams II 誌謝 VI 目錄 VII 表目錄 XI 圖目錄 XIII 符號表 XVIII 第一章 緒論 1 1.1 背景介紹 1 1.2 撓性驅動器文獻回顧 3 1.3 動機與目標 7 1.4 論文架構 10 第二章 設計概念 11 2.1 前言 11 2.2 預載法之設計概念 11 2.3 以螺旋彈簧、直樑及曲樑為負勁度元件之特性比較 14 2.3.1 以螺旋彈簧為負勁度元件 14 2.3.2 以直樑為負勁度元件 21 2.3.3 以曲樑為負勁度元件 22 2.4 本章小結 24 第三章 預載法之曲樑設計 26 3.1 前言 26 3.2 旋轉型之曲樑設計 26 3.2.1 建立參數化模型 27 3.2.2 分析結果 28 3.2.3 給定參數對機構特性之影響 31 3.2.4 曲樑形狀對機構特性之影響 34 3.2.5 單向位移之旋轉型曲樑設計 36 3.3 固定型之曲樑設計 38 3.3.1 曲樑形狀之選用 38 3.3.2 形狀最佳化 40 3.3.3 最佳化結果 41 3.3.4 給定參數對機構特性之影響 43 3.3.5 單向位移之固定型曲樑設計 44 3.3.6 旋轉型與固定型之優缺點比較 45 3.3.7 變勁度機構之尺寸縮放 46 3.4 y及z方向預載對曲樑力量-位移曲線特性之影響 47 3.4.1 y方向平移預載對曲樑力量-位移曲線特性之影響 47 3.4.2 z方向旋轉預載對曲樑力量-位移曲線特性之影響 48 3.5 本章小結 49 第四章 平面彈簧設計 50 4.1 前言 50 4.2 平面彈簧形狀設計 50 4.3 平面彈簧設計程式 54 4.3.1 最佳化模型 54 4.3.2 最佳化結果 57 4.4 平面彈簧、螺旋彈簧及波簧之能量密度比較 59 4.4.1 螺旋彈簧之分析 60 4.4.2 波簧之分析 62 4.4.3 平面彈簧、螺旋彈簧及波簧之能量密度比較 63 4.5 本章小結 64 第五章 有限元素分析與實驗驗證 65 5.1 前言 65 5.2 有限元素分析 65 5.2.1 旋轉型之曲樑有限元素分析 67 5.2.2 旋轉型之接頭摩擦分析 69 5.2.3 固定型之曲樑有限元素分析 70 5.2.4 軸向彈簧之有限元素分析 71 5.3 實驗驗證 74 5.3.1 平衡位置及靜態力之調控 75 5.3.2 實驗配置 78 5.3.3實驗驗證 82 5.4 本章小結 86 第六章 結論與未來工作 87 6.1 結論 87 6.2 未來工作 89 參考文獻 92 著作權 100

    [1] R. Ham, T. Sugar, B. Vanderborght, K. Hollander, and D. Lefeber, 2009, “Compliant actuator designs,” IEEE Robotics & Automation Magazine, 16(3), pp. 81-94.
    [2] D. P. Ferris, and C. T. Farley, 1997, “Interaction of leg stiffness and surface stiffness during human hopping,” Journal of Applied Physiology, 82(1), pp. 15-22.
    [3] M. Zinn, O. Khatib, B. Roth, and J. K. Salisbury, 2004, “Playing it safe [human-friendly robots],” IEEE Robotics & Automation Magazine, 11(2), pp. 12-21.
    [4] H. Vallery, J. Veneman, E. van Asseldonk, R. Ekkelenkamp, M. Buss, and H. van Der Kooij, 2008, “Compliant actuation of rehabilitation robots,” IEEE Robotics & Automation Magazine, 15(3), pp. 60-69.
    [5] S. Au, and S. Herr, 2008, “Powered ankle-foot prosthesis,” IEEE Robotics & Automation Magazine, 15(3), pp. 52-59.
    [6] J. Sulzer, M. Peshkin, and J. Patton, 2008, “Pulling your strings,” IEEE Robotics & Automation Magazine, 15(3), pp. 70-78.
    [7] A. Warkentin, and S. E. Semercigil, 1995, “Variable stiffness control of a single-link flexible robotic arm,” Journal of Sound and Vibration, 187(1), pp. 1-21.
    [8] A. De, and U. Tasch, 1996, “A two-dof manipulator with adjustable compliance capabilities and comparison with the human finger,” Journal of Robotic Systems, 13(1), pp. 25-34.
    [9] A. E. Kerdok, A. A. Biewener, T. A. McMahon, P. G. Weyand, and H. M. Herr, 2002, “Energetics and mechanics of human running on surfaces of different stiffnesses,” Journal of Applied Physiology, 92(2), pp. 469-478.
    [10] S. Lee, 2005, “Development of a new variable remote center compliance (VRCC)with modified elastomer shear pad (ESP) for robot assembly,” IEEE Transactions on Automation Science and Engineering, 2(2), pp. 193-197.
    [11] J. Choi, S. Hong, W. Lee, S. Kang, and M. Kim, 2011, “A robot joint with variable stiffness using leaf springs,” IEEE Transactions on Robotics, 27(2), pp. 229-238.
    [12] A. González Rodríguez, J. M. Chacón, A. Donoso, and A. G. González Rodríguez, 2011, “Design of an adjustable-stiffness spring: Mathematical modeling and simulation, fabrication and experimental validation,” Mechanism and Machine Theory, 46(12), pp. 1970-1979.
    [13] T. M. Huh, Y.-J. Park, and K.-J. Cho, 2012, “Design and analysis of a stiffness adjustable structure using an endoskeleton,” International Journal of Precision Engineering and Manufacturing, 13(7), pp. 1255-1258.
    [14] R.-J. Wang, and H.-P. Huang, 2012, “Mechanically stiffness-adjustable actuator using a leaf spring for safe physical human-robot interaction,” Mechanika, 18(1), pp. 77-83.
    [15] W. K. Kim, D. G. Kim, and B.-J. Yi, 1996, “Analysis of a planar 3 degree-of-freedom adjustable compliance mechanism,” KSME Journal, 10(3), pp. 286-295.
    [16] C. Prelle, A. Jutard, and M. Betemps, 2001, “Compliance adjustment of a metal bellows actuator by control law parameters,” Mechatronics, 11(6), pp. 631-647.
    [17] R. Van Ham, B. Vanderborght, B. Verrelst, M. Van Damme, and D. Lefeber, 2007, “MACCEPA: the mechanically adjustable compliance and controllable equilibrium position actuator: design and implementation in a biped robot,” Robotics and Autonomous Systems, 55(10), pp. 761-768.
    [18] S. Nagarajaiah, and S. Sahasrabudhe, 2006, “Seismic response control of smart sliding isolated buildings using variable stiffness systems: an experimental and numerical study,” Earthquake Engineering & Structural Dynamics, 35(2), pp. 177-197.
    [19] J.-J. Park, B.-S. Kim, J.-B. Song, and H.-S. Kim, 2008, “Safe link mechanism based on nonlinear stiffness for collision safety,” Mechanism and Machine Theory, 43(10), pp. 1332-1348.
    [20] R. Ghorbani, and Q. Wu, 2009, “Adjustable stiffness artificial tendons: Conceptual design and energetics study in bipedal walking robots,” Mechanism and Machine Theory, 44(1), pp. 140-161.
    [21] J.-J. Park, and J.-B Song, 2010, “A nonlinear stiffness safe joint mechanism design for human robot interaction,” Journal of Mechanical Design, 132(6), 061005.
    [22] B.-S. Kim, J.-B. Song, and J.-J. Park, 2010, “A serial-type dual actuator unit with planetary gear train: basic design and applications,” IEEE/ASME Transactions on Mechatronics, 15(1), pp. 108-116.
    [23] H.-S. Kim, J.-J. Park, J.-B. Song, and J.-H. Kyung, 2010, “Design of safety mechanism for an industrial manipulator based on passive compliance,” Journal of Mechanical Science and Technology, 24(11), pp. 2307-2313.
    [24] D. Hyun, H. S. Yang, J. Park, and Y. Shim, 2010, “Variable stiffness mechanism for human-friendly robots,” Mechanism and Machine Theory, 45(6), pp. 880-897.
    [25] K. Sreenath, H.-W. Park, I. Poulakakis, and J. W. Grizzle, 2011, “A compliant hybrid zero dynamics controller for stable, efficient and fast bipedal walking on MABEL,” The International Journal of Robotics Research, 30(9), pp. 1170-1193.
    [26] B.-S. Kim, and J.-B. Song, 2012, “Design and control of a variable stiffness actuator based on adjustable moment arm,” IEEE Transactions on Robotics, 28(5), pp. 1145-1151.
    [27] S. Kajikawa, and K. Abe, 2012, “Robot finger module with multidirectional adjustable joint stiffness,” IEEE/ASME Transactions on Mechatronics, 17(1), pp. 128-135.
    [28] Y. Huang, B. Vanderborght, R. Van Ham, Q. Wang, M. Van Damme, G. Xie, and D. Lefeber, 2012, “Step length and velocity control of a dynamic bipedal walking robot with adaptable compliant joints,” IEEE/ASME Transactions on Mechatronics, 18(2), pp. 1-14.
    [29] N. Hogan, 1984, “Adaptive control of mechanical impedance by coactivation of antagonist muscles,” IEEE Transactions on Automatic Control, 29(8), pp. 681-690.
    [30] R. Shadmehr, and M. A. Arbib, 1992, “A mathematical analysis of the force-stiffness characteristics of muscles in control of a single joint system,” Biological Cybernetics, 66(6), pp. 463-477.
    [31] S. D. Prior, P. R. Warner, A. S. White, J. T. Parsons, and R. Gill, 1993, “Actuators for rehabilitation robots,” Mechatronics, 3(3), pp. 285-294.
    [32] J. K. Mills, 1993, “Hybrid actuator for robot manipulators: design, control and performance,” Mechatronics, 3(1), pp. 19-38.
    [33] W.-K. Kim, J.-Y. Lee, and B. J. Yi, 1997, “Analysis for a planar 3 degree-of-Freedom parallel mechanism with actively adjustable stiffness characteristics,” KSME International Journal, 11(4), pp. 408-418.
    [34] T. Noritsugu, and T. Tanaka, 1997, “Application of rubber artificial muscle manipulator as a rehabilitation robot,” IEEE/ASME Transactions on Mechatronics, 2(4), pp. 259-267.
    [35] H. Kobayashi, K. Hyodo, and D. Ogane, 1998, “On tendon-driven robotic mechanisms with redundant tendons,” The International Journal of Robotics Research, 17(5), pp. 561-571.
    [36] R. Q. Van der Linde, 1999, “Design, analysis, and control of a low power joint for walking robots, by phasic activation of McKibben muscles,” IEEE Transactions on Robotics Automation, 15(4), pp. 599-604.
    [37] C. English, and D. Russell, 1999, “Implementation of variable joint stiffness through antagonistic actuation using rolamite springs,” Mechanism and Machine Theory, 34(1), pp. 27-40.
    [38] C. E. English, and D. Russell, 1999, “Mechanics and stiffness limitations of a variable stiffness actuator for use in prosthetic limbs,” Mechanism and Machine Theory, 34(1), pp. 7-25.
    [39] H. Kobayashi, and R. Ozawa, 2003, “Adaptive neural network control of tendon-driven mechanisms with elastic tendons,” Automatica, 39(9), pp. 1509-1519.
    [40] A. Bicchi, and G. Tonietti, 2004, “Fast and “soft-arm” tactics,” IEEE Robotics & Automation Magazine, 11(2), pp. 22-33.
    [41] D. Chakarov, 2004, “Study of the antagonistic stiffness of parallel manipulators with actuation redundancy,” Mechanism and Machine Theory, 39(6), pp. 583-601.
    [42] B. Verrelst, B. Vanderborght, J. Vermeulen, R. V. Ham, J. Naudet, and D. Lefeber, 2005, “Control architecture for the pneumatically actuated dynamic walking biped “Lucy”,” Mechatronics, 15(6), pp. 703-729.
    [43] G. Granosik, and J. Borenstein, 2005, “Integrated joint actuator for serpentine robots,” IEEE/ASME Transactions on Mechatronics, 10(5), pp. 473-481.
    [44] S.-L. Chang, J.-J. Lee, and H.-C. Yen, 2005, “Kinematic and compliance analysis for tendon-driven robotic mechanisms with flexible tendons,” Mechanism and Machine Theory, 40(6), pp. 728-739.
    [45] B. Vanderborght, B. Verrelst, R. Van Ham, M. Van Damme, D. Lefeber, B. M. Y. Duran, and P. Beyl, 2006, “Exploiting natural dynamics to reduce energy consumption by controlling the compliance of soft actuators,” The International Journal of Robotics Research, 25(4), pp. 343-358.
    [46] S. A. Migliore, E. A. Brown, and S. P. DeWeerth, 2007, “Novel nonlinear elastic actuators for passively controlling robotic joint compliance,” Journal of Mechanical Design, 129(4), pp. 406-412.
    [47] S. H. Huh, and Z. Bien, 2007, “Robust sliding mode control of a robot manipulator based on variable structure-model reference adaptive control approach,” IET Control Theory & Applications, 1(5), pp. 1355-1363.
    [48] J.-F. Zhang, C.-J. Yang, Y. Chen, Y. Zhang, and Y.-M. Dong, 2008, “Modeling and control of a curved pneumatic muscle actuator for wearable elbow exoskeleton,” Mechatronics, 18(8), pp. 448-457.
    [49] J. W. Hurst, and A.A. Rizzi, 2008, “Series compliance for an efficient running gait,” IEEE Robotics & Automation Magazine, 15(3), pp. 42-51.
    [50] R. Filippini, S. Sen, and A. Bicchi, 2008, “Toward soft robots you can depend on,” IEEE Robotics & Automation Magazine, 15(3), pp. 31-41.
    [51] B. Vanderborght, R. Van Ham, D. Lefeber, T. G. Sugar, and K. W. Hollander, 2009, “Comparison of mechanical design and energy consumption of adaptable, passive-compliant actuators,” The International Journal of Robotics Research, 28(1), pp. 90-103.
    [52] N. Vitiello, T. Lenzi, S. M. M. De Rossi, S. Roccella, and M. C. Carrozza, 2010, “A sensorless torque control for antagonistic driven compliant joints,” Mechatronics, 20(3), pp. 355-367.
    [53] K.-H. Nam, B.-S. Kim, and J.-B. Song, 2010, “Compliant actuation of parallel-type variable stiffness actuator based on antagonistic actuation,” Journal of Mechanical Science and Technology, 24(11), pp. 2315-2321.
    [54] D. Shin, I. Sardellitti, Y.-L. Park, O. Khatib, and M. Cutkosky, 2010, “Design and control of a bio-inspired human-friendly robot,” The International Journal of Robotics Research, 29(5), pp. 571-584.
    [55] J. Kobayashi, K. Okumura, Y. Watanabe, and N. Suzuki, 2010, “Development of a variable stiffness joint drive module and experimental results of joint angle control,” Artificial Life and Robotics, 15(1), pp. 72-76.
    [56] D. Mitrovic, S. Klanke, and S. Vijayakumar, 2011, “Learning impedance control of antagonistic systems based on stochastic optimization principles,” The International Journal of Robotics Research, 30(5), pp. 556-573.
    [57] J. W. Hurst, J. E. Chestnutt, and A. A. Rizzi, 2010, “The actuator with mechanically adjustable series compliance,” IEEE Transactions on Robotics, 26(4), pp. 597-606.
    [58] A. Jafari, N. G. Tsagarakis, and D. G. Caldwell, 2011, “A novel intrinsically energy efficient actuator with adjustable stiffness (AwAS),” IEEE/ASME Transactions on Mechatronics, 18(1), pp. 355-365.
    [59] L. C. Visser, R. Carloni, and S. Stramigioli, 2011, “Energy-efficient variable stiffness actuators,” IEEE Transactions on Robotics, 27(5), pp. 865-875.
    [60] J. H. Lee, and B.-J. Yi, 2011, “Modulation of dynamic behavior of anthropomorphic robot: A biomimetic approach with force redundancy,” Mechatronics, 21(1), pp. 261-271.
    [61] J. H. Lee, B.-J. Yi, and J. Y. Lee, 2012, “Adjustable spring mechanisms inspired by human musculoskeletal structure,” Mechanism and Machine Theory, 54, pp. 76-98.
    [62] M. Kilic, Y. Yazicioglu, and D. F. Kurtulus, 2012, “Synthesis of a torsional spring mechanism with mechanically adjustable stiffness using wrapping cams,” Mechanism and Machine Theory, 57, pp. 27-39.
    [63] R. Carloni, L. C. Visser, and S. Stramigioli, 2012, “Variable stiffness actuators: a port-based power-flow analysis,” IEEE Transactions on Robotics, 28(1), pp. 1-11.
    [64] G. A. Pratt, and M. M. Williamson, 1995, “Series elastic actuators,” in Proc. IEEE Int. Workshop on Intelligent Robots and Systems (IROS’95), Pittsburg, USA, pp. 399-406.
    [65] M. Yalcin, B. Uzunoglu, E. Altintepe, and V. Patoglu, 2013, “VnSA: Variable negative stiffness actuation based on nonlinear deflection characteristics of buckling beams,” 2013 IEEE/RSJ Internation Conference on Intelligent Robots and Systems (IROS), pp. 5418-5424.
    [66] C.-C. Lan, and K.-M. Lee, 2006, “Generalized shooting method for analyzing compliant mechanisms with curved members,” ASME Journal of Mechanical Design, 128(4), pp. 765-775.
    [67] C.-C. Lan, and Y.-J. Cheng, 2008, “Distributed shape optimization of compliant mechanisms using intrinsic functions,” ASME Journal of Mechanical Design, 130(7), 072304.
    [68] A. H. Nayfeh, and D. T. Mook, Nonlinear Oscillations, Wiley, New York, 1979.
    [69] Y.-H. Chen, and C.-C. Lan, 2012, “An adjustable constant-force mechanism for adaptive end-effector operations,” ASME Journal of Mechanical Design, 134(3), 031005.
    [70] Smalley® http://www.smalley.com/
    [71] ANSYS®, Inc., 2011, “Solid186, element library, element reference, ANSYS 12.1 Help”.

    下載圖示 校內:2019-07-30公開
    校外:2019-07-30公開
    QR CODE