簡易檢索 / 詳目顯示

研究生: 林崧銘
lin, song-ming
論文名稱: 單一碰撞的合併最大碼/質數碼以及延伸二次餘碼/光正交碼之二維跳波/展時光分碼多重擷取技術
One-Coincidence Merged-M/Prime and EQC/OOC wavelength-hopping/time-spreading Optical CDMA Techniques
指導教授: 黃振發
Huang, Jen-Fa
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 電腦與通信工程研究所
Institute of Computer & Communication Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 92
中文關鍵詞: 光分碼多重擷取布雷格光纖光柵陣列波導光柵波域/時域
外文關鍵詞: Fiber Bragg Gratings(FBG), Arrayed-Waveguide Grating(AWG), Optical code division multiple Access(OCDMA), wavelength/time(W/T)
相關次數: 點閱:113下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 光分碼多重擷取 (Optical Code Division Multiple Access, OCDMA)類似射頻分碼多重擷取(RF-CDMA)技術,在光纖擷取網路,每一使用者設定一個獨特編碼, 在接收端必需要在眾多使用者之中對抗其他干擾而只撿測到自己的編碼。
    光分碼多重擷取系統分為時域(time domain)、空域(spatial domain)及波域(wavelength domain),這些編碼稱為一維光分碼多重擷取(1-D OCDMA),一維光分碼多重擷取由於效率及性能不佳因而有二維光分碼多重擷取(2-D OCDMA)的發展。
    二維光分碼多重擷取分為:1). 時域/空域(time/spatial) 2). 空域/波域(spatial/wavelength) 3). 波域/時域(wavelength/time)。這些二維光編碼比一維光編碼有較多的編碼數量,而且二維光編碼設計成單一碰撞碼(one hit or one-coincidence code)則自相關性零異相(zero out-of -phase autocorrelation),互相關性只有一個碰撞(the cross-correlation equal to one)的特性,如此可以降低多重擷取干擾(multiple access interference, MAI),而本論文所提出的單一碰撞波域/時域編碼可以應用在非同調光纖網路(incoherent OCDMA networks) 具有較多有效使用者、具有較高頻譜效率、以及具有最小碰撞率的特性。
    在這本論文提出了二種波域/時域光分碼多重擷取的編/解碼系統,一個是合併最大長度碼/質數碼(merged-M/prime code),另一個是延長二次餘碼/光正交碼(extend quadratic congruence/optical orthogonal code,EQC/OOC) ,然後應用布雷格光纖光柵(Fiber Bragg Gratings, FBG) 以及陣列波導光柵路由器(Arrayed- Waveguide Grating, AWG)來設計此兩種光分碼多重擷取的編/解碼器系統。
    在系統分析上提出兩種方法:1. 二項式機率分配(the Binomial probability distribution approach) 2. 高斯分配(Gaussian approach)來分析其誤碼率(Bit Error Rate, BER),在雜訊分析上亦考慮APD (avalanche photodiode)雜訊。
    因此,所提出的系統在非同調光纖網路,證實擁有較大的編碼數而有較多的有效使用者,並且系統的實現比起其他系統更簡化更經濟。

    The OCDMA (Optical Code Division Multiple Access) system is similar to the RF CDMA system, each user is assigned a unique signature code with which to access the network, and the receiver must be capable of detecting this signature sequence against the background of interference from other users.
    The OCDMA coding techniques can be divided into: (1). Coding in the time domain such as direct sequence; (2). Coding in the wavelength domain using either coherent (spectral phase) or incoherent (spectral amplitude) approach; (3). Coding in the spatial domain with the M-matrix codes. These OCDMA codes are called one-dimensional (1-D) codes. 1-D OCDMA is limited by inefficiency and poor system performance. In order to overcome the drawbacks of 1-D OCDMA, two-dimensional (2-D) codes are developed
    The 2-D OCDMA coding schemes can be classified into three kinds: (1). Temporal/Spatial (T/S) coding; (2).Spatial/Wavelength (S/W) coding; (3). Wavelength/Time (W/T) coding. These 2-D OCDMA codes have more cardinality than 1-D OCDMA, furthermore, one-coincidence 2-D OCDMA has zero out-of-phase autocorrelation and the cross-correlation equal to one, which can reduces the MAI. The proposed one-coincidence wavelength-hopping/time-spreading (W/T) code is suited to incoherent OCDMA networks that have large cardinalities, high spectral efficiencies, and minimal cross correlation values.
    In this dissertation, we propose two types of one-coincidence W/T coding schemes. One is the merged-M/prime code and other is the EQC/OOC. Then we design encoder/decoder based on fiber Bragg gratings (FBG) and the cyclic property of Arrayed-Waveguide Grating (AWG) router.
    The performance of the OCDMA system is confirmed by two methods: 1. the Binomial probability distribution approach. 2. Gaussian approach. The APD (avalanche photodiode) noise is also considered in the system.
    Thus these 2-D OCDMA systems have larger capacity and then have larger number of active users to access simultaneously in the incoherent OCDMA system, moreover, the design of networks which we proposed can make the whole architecture simpler and more economical than other types of W/T OCDMA.

    Chapter 1. Introduction 1 1.1 The Development of OCDMA 1 1.2 Code Family 3 1.2.1 Optical Orthogonal Codes (OOCs) 3 1.2.2 Prime Codes 4 1.2.3 Maximal-Length Sequence (M-sequence) Codes 5 a. The Realization of the M-sequence 6 1.3 Optical Devices in OCDMA 7 1.3.1 Fiber Bragg Gratings 7 1.3.2 Incoherent ASE source 9 1.3.3 Optical Circulator 10 1.3.4 Optical Star Coupler 10 1.3.5 Arrayed Waveguide Gratings(AWG) 11 1.3.6 Optical Delay Lines 13 1.4 Multiplexing Techniques in Optical Communications 15 1.4.1 Optical Time-Division Multiplexing (OTDM) 15 1.4.2 Optical Wavelength Division Multiplexing (OWDM) 16 1.4.3 Optical Code-Division Multiplexing (OCDMA) 17 1.4.4 Overview on Optical CDMA System 18 One-Dimensional (1-D) OCDMA 20 Two-Dimensional (2-D) OCDMA 21 a Temporal/Spatial Coding Scheme 22 b. Spatial/Frequency Coding Scheme 23 c. Wavelength Hopping/Time Spreading (W/T) 25 1.5 Dissertation Preview 27 Chapter 2 One-Coincidence Code Sequences and Noise Analysis in Wavelength Hopping/Time Spreading 29 2.1 One-Coincidence Code Sequences 29 2.2 The Construction of One-Coincidence Sequences in Wave-length/Time Code 30 2.2.1. Six Types of One-Coincidence Sequences. 30 2.2.2. The Construction of the One-Coincidence Sequence with Specified Distance between Adjacent Symbols.[18] 36 2.3 Noise Analysis of OCDMA 38 2.3.1 System Performance with Avalanche Photodiode and Thermal Noise 40 Chapter 3. OCDMA network codecs with merged-M-coded 44 wavelength-hopping and prime-coded time-spreading 44 3.1. Design of One-Coincidence 2-D OCDMA Codes 44 3.2. Design of Hybrid CDMA Code 45 3.3 Design system Network 54 3.3.1 Design of OCDMA Network Using FBGs and Delay lines 54 3.3.2. Design of OCDMA Network Using AWG Routers 56 3.4. Performance Analyses 59 3.4.1: Bit Error Rate (BER) Analysis: Binomial Probability Distribution Approach 59 3.4.2: Probability of Error Analysis: Gaussian approach 62 3.5. Summary 65 Chapter 4 One-Coincidence EQC-OOC Wavelength-Time Coding over Arrayed Waveguide-Gratings Optical CDMA 66 4.1 Design of EQC/OOC code 66 4.1.1. Constructing the extended quadratic congruence (EQC) code for wavelength hopping: 66 4.1.2. Calculating the Optical-Orthogonal Code (OOC) delay time: 67 4.1.3. Integrating the EQC permutation Hi with OOC S0 68 4.1.4 Cardinality 68 4.2. Design the Proposed Coding Scheme using AWGs 69 4.2.1. The Whole New Structure of the EQC-OOC 2-D OCDMA 69 4.2.2. Encoder Design of Code Group 0 70 4.2.3. Encoder Design for Group 1 to 6 71 4.2.4. Decoder Design for Group 0 72 4.2.5. Decoder Design for Group 1 to 6 73 4.2.6. A New Type of Decoder Design for groups 1 to 6. 75 4.3. System performances 77 4.3.1 Error Probability 77 4.4. Summary 79 Chapter 5. Conclusions and Future work 80 Appendix A : The proof of one-coincidence in W/T code 82 Appendix B : The flow-chart for one-coincidence W/T code simulation 84 Appendix C : Spectral efficiency in W/T code 85 References 87

    [1] C. F. Lam, “To Spread or Not to Spread: The Myths of Optical CDMA,” IEEE LEOS 2000 Annual Mtg., vol. 2, pp. 810–811, Nov. 2000.
    [2] N. Karafolas and D. Uttamchandani, “Optical Fiber Code Division Multiple Access Networks: a review,” Optical Fiber Technol., vol. 2, no. 17, pp. 149-168, 1996.
    [3] F.R.K. Chung, J.A. Salei, and V.K. Wei, “Optical Orthogonal Codes: Design, Analysis and Application,” IEEE Trans. Inform. Theory, vol. 35, pp. 595-604, May 1989.
    [4] G.C. Yang and W.C. Kwong, “Performance Analysis of Optical CDMA with Prime code,” Electronics Letters, vol. 31, no.7, pp.569-570, March 1995.
    [5] J. Shah, “Optical CDMA,” Optical & Photonics News, pp.42-47,April 2003.
    [6] D.V.Sarwate, and M.B. Pursley, “Crosscorrelation Properties of Psedorandom and Related Sequences,” Proceding of the IEEE, vol.68,no.5, pp.593-619, MAY 1980.
    [7] K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in Optical Fiber Waveguides: Application to reflection filter favrication”, Appl. Phys. Lett., vol.32, pp. 647-679, 1978.
    [8] H. Takahashi, K. Oda, H. Toba, and Y. Inoue, “Transmission Characteristics of Arrayed-Waveguide N×N Wavelength Multiplexer,” J. Lightwave Technol., vol. 13, no. 3, pp. 447-455, March 1995.
    [9] G. Lenz, B. J. Eggleton, C. K. Madsen, and R. E. Slusher, “Optical Delay Lines Based on Optical Filters,” IEEE J. Quantum Electron., vol. 37, pp. 525-532, Apr. 2001.
    [10] L.R. Chen, “Technologies for Hybrid Wavelength/Time Optical CDMA Transmission,” Canadian conference on Electrical and Computer Engineering, vol. 1, pp. 435-440, May 2001.
    [11] E. Park, A.J. Mendez, and E.M. Garmire, “Temporal/Spatial Optical CDMA Networks-Design, Demonstration, and Comparison with Temporal Networks,” IEEE Photon. Technol. Lettr., vol. 4, no. 10, pp. 1160–1162, Oct. 1992.
    [12] L. Tančevski and I. Andonovic, “Hybrid Wavelength Hopping/Time Spreading Schemes for Use in Massive Optical Networks with Increased Security,” J. Lightwave Technol., vol. 14, no. 12, pp. 2636-2647, Dec. 1996.
    [13] C.C.Yang and J.F.Huang, “Two-Dimensional M-matrices Coding in Spatial/Frequency Optical CDMA Networks,” IEEE Photon. Technol. Lettr., vol. 15, no. 1, pp. 168-170, Jan. 2003.
    [14] S. Yegnanarayanan, A.S. Bhushan, and B. Jalali, “Fast Wavelength-Hopping Time- Spreading Encoding/Decoding for Optical CDMA,” IEEE Photon. Technol. Lettr., vol.12, no. 5, pp. 573 – 575, May 2000.
    [15] J.A. Salehi, “Code Division Multiple-Access Techniques in Optical Fiber Networks- Part I: Fundamental Principles,” IEEE Trans. Commun., vol. 37, no. 8, pp. 824-833, Aug. 1989.
    [16] J.A. Salehi and C.A. Brackett, “Code Division Multiple-Access Techniques in Optical Fiber Networks–Part II: Systems Performance Analysis,” IEEE Trans. Commun., vol. 37, no. 8, pp. 834–842, Aug. 1989.
    [17] A.A. Shaar and P.A. Davies, “A survey of One-Coincidence Sequences for Frequency-Hopped Spread-Spectrum Systems,” IEE proceeding, vol. 131, pp.719–724, 1984.
    [18] L.Bin,“One-Coincidence Sequences with Specified Distance Between Adjacent Symbols for Frequency-Hopping Multiple Access,” IEEE Trans. Commun., vol. 45, no. 4, pp. 408-410, April 1997.
    [19] H.M.Kwon,“Optical Orthogonal Code-Division Multiple-Access System—Part I: APD Noise and Thermal Noise,” IEEE Trans. Commun., vol. 42, no. 7, pp. 2470-2479, July 1994.
    [20] E.K.H. Ng and E.H. Sargent, “Optimum Threshold Detection in Real-Time Scalable High-Speed Multi-Wavelength Optical Code-Division Multiple-Access LANs,” IEEE Trans. Commun., vol. 50, no. 5, pp. 778-784, May 2002.
    [21] M.S.Kumar, “SSFBG-based Decorrelator for MUI rejection in Sysnchronous Optical CDMA Systems,” IEE Proc.-Optoelectron., Vol. 152, No. 6, pp. 277-284, December 2005.
    [22] J.F. Huang and D.Z. Hsu, “Fiber-Grating-Based Optical CDMA Spectral Coding with Nearly Orthogonal M-sequence Codes," IEEE Photon. Technol. Lettr., vol. 12, no. 9, pp. 1252-1254, September 2000.
    [23] L. Tančevski, I. Andonovic, M. Turand, and J. Budin, “Hybrid Wavelength Hopping/Time Spreading code division multiple access system,” IEE Proc.-Optoelectro., vol. 143, no. 3, pp. 161-166, June 1996.
    [24] L.R. Chen, “Flexible Fiber Bragg Grating Encoder/Decoder for Hybrid Wavelength-Time Optical CDMA,” IEEE Photon. Technol. Lettr., vol.13, no.11, pp.1233-1235, Noverber 2001
    [25] S.P. Wan and Y.Hu, “Two-Dimensional Optical CDMA Differential System With Prime/OOC Codes,” IEEE Photon. Technol. Lettr., vol. 13, no.12, pp. 1373-1375, December 2001.
    [26] S. Kim, “Cyclic Optical Encoder/Decoder for Compact Optical CDMA Networks,” IEEE Photon. Technol. Lettr., vol. 12, no. 4, pp. 428-430, April 2000.
    [27] W.C. Kwong, G.C. Yang, V. Babt, C.S. Bres, and P.R. Prucnal, “Multiple-Wavelength Optical Orthogonal Codes Under Prime-sequence Permutations for Optical CDMA,” IEEE Trans. Commun., vol. 53, no. 1, pp.117-123, January 2005.
    [28] W.C. Kwong, G.C. Yang, and Y.C. Liu, “A New Family of Wavelength-Time Optical CDMA Codes Utilizing Programmable Arrayed Waveguide Gratings,” IEEE Journal on selected areas in Communications, vol. 23, no. 8, pp. 1564-1571, August 2005.
    [29] K. Yu, J. Shin, and N. Park, “Wavelength-Time Spreading Optical CDMA System Using Wavelength Multiplexers and Mirrored Fiber Delay Lines,” IEEE Photon. Technol. Lettr, vol. 12, no. 9, pp. 1278-1280, Sept. 2000.
    [30] W.C. Kwong, Guu-Chang Yang, and Jian-Guo Zhang, “2n Prime-Sequence Codes and Coding Architecture for Optical Code-Division Multiple-Access ,” IEEE Trans. Commun., vol. 44, pp. 1152-1162, Sept. 1996.
    [31] C.C. Yang, J.F. Huang, and S.P. Tseng, “Optical CDMA Network Codes Structured With M-Sequence Codes Over Waveguide-Grating Routers,” IEEE photon.Technol.Lettr, vol. 16, no. 2, pp. 641-643, February 2004.
    [32] S.W. Lee and D.H. Green, “Performance Analysis of Optical Orthogonal Codes in CDMA LANs,” IEEE Proc.-Commun, vol. 145, no. 4, pp. 265-271, August 1998.
    [33] W.C. Kwong, P.A. Perroer, and P.R. Prcunal, “Performance Comparison of Asynchronous and Synchronous Code-Division Multiple-Access Techniques for Fiber-Optic Local Area Networks,” IEEE Trans. Commun., vol. 39, pp. 1625-1634, Nov. 1991.
    [34] E. Jugl and K. Iversen, “New Combinatorial BER Bounds for Families of (0, 1)-Matrix Codes,” in Proc.IEEE, Grobal Telecommunications conference, vol, 3, pp. 1543-1547, 1997.
    [35] J.H. Wen, J.Y. Lin, and C.Y. Liu, “Modified Prime-Hop Codes for Optical CDMA Systems,” IEE Proc.-Commu., vol. 150, no. 5, pp. 404-408, October 2003.
    [36] S.V.Maric, “New Family of Algebraically Designed Optical Orthogonal Codes for use in CDMA fibre-Optic Networks,” Electronics. Lettr., vol.29, no.6, pp. 538-539, March 1993.
    [37] S.M. Lin, J.F. Huang, and C.C. Yang, “Optical CDMA Network Codecs with Merged-M-coded Wavelength-Hopping and Prime-Coded Time-Spreading,” Optical Fiber Technology, vol. 13, pp 117-128, April.2007.
    [38] J.B. Abshire, “Performance of OOK and Low-Order PPM Modulations in Optical Communications When Using APD-Based Receivers,” IEEE Trans. Commun., vol. 32, no. 10, pp. 1140-1143, October 1984.
    [39] X.Wang, N.Wata, T.Miyazaki, and K.Kitayama, “Coherent OCDMA Using DPSK Data Format with Balanced Detection,” IEEE photon.Technol.Lettr,vol. 18, no. 7, pp. 826-828, April 2006.
    [40] E.K.H.Ng and E. H.Sargent, “Mining the Fibre-Optic Channel Capacity tn the Local Area: Maximizing Spectral efficiency in Multi-Wavelength Optical CDMA Networks,” IEEE2001, pp. 712–715.
    [41] T.W.Frederick and E.H.Sergent, “Optimizing Spectral Efficiency in Multiwavelength Optical CDMA System, ” IEEE Trans. Commun., vol.51, No.9,pp.1442-1445,Septemper.2003.
    [42] E.S.Shivaleela, A.Selvarajan, and T.Srinivas, “Two-Dimensional Optical Orthogonal Codes for Fiber-Optic CDMA Networks,” J. Lightwave Technology, vol. 23, NO.2,pp. 647–654, February 2005.
    [43] A.J.Mendez, R.M.Garliardi, H.X.C.Feng, J.P.Heritage, and J.M.Morookian, “Strategies for Realizing Optical CDMA for Dense, High-speed, Long Span, optical Network Application,” J. Lightwave Technology, vol. 18, NO.12,pp. 1685–1696, December 2000.

    下載圖示 校內:2009-07-11公開
    校外:2009-07-11公開
    QR CODE