| 研究生: |
陳永紳 Chen, Yung-Shen |
|---|---|
| 論文名稱: |
添加甜菜鹼小分子於雙離子修飾羧甲基纖維素對離子導電度於水減少的影響 The Effect of the Additive Betaine in Carboxymethyl Cellulose Bearing Zwitterion on Ionic Conductivity with a Decrease in Water Content |
| 指導教授: |
溫添進
Wen, Ten-Chin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 中文 |
| 論文頁數: | 134 |
| 中文關鍵詞: | 羧甲基纖維素 、雙離子 、高分子電解質 、離子導電度 |
| 外文關鍵詞: | carboxymethyl cellulose, zwitterion, polymer electrolyte, ionic conductivity |
| 相關次數: | 點閱:59 下載:12 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著可彎折穿戴式電子裝置的蓬勃發展,人們除了不斷研發新的電極材料,電解質也是影響其表現的一大重點,其中,電解質的使用上逐漸從早期的液態電解質轉變為膠態電解質或全固態電解質,以達到這些電子裝置所需的機械強度。除了增強機械強度,提升電化學表現也是目標之一,然而在大部分的文獻中,膠態或全固態電解質都無法維持跟液態電解質相同的電化學表現,影響的因素與電解質材料的選擇有關,因此在本研究中我們選用羧甲基纖維素(CMC)作為高分子,利用oxa-Michael addition將帶有四級銨根及磺酸根的雙離子SBMA接枝上CMC,並利用FTIR確認SBMA有確實接枝,同時加入betaine小分子雙離子使膠態電解質在電化學表現上能盡量接近液態電解質。本研究分為兩部分,在水系膠態電解質的部分使用水當溶劑,將上述的高分子加入戊二醛作為交聯劑以維持一定程度的機械強度,在有機系膠態電解質的部分使用碳酸二乙酯(DEC)當溶劑,加入戊二醛及PEGDA,除了維持機械強度,PEGDA也幫助吸收DEC進入高分子骨架。在水系的電化學表現上,我們分析膨潤度、電解鹽濃度與不同高分子對於離子導電度的影響。在有機系的電化學表現上,我們分析浸泡DEC的時長與加入不同量的PEGDA對離子導電度的影響。由於雙離子的存在可以形成離子通道,透過EIS分析,在水系中CMC-SBMA浸泡1M電解鹽溶液於150%膨潤度下表現出12.26 mS/cm的最高離子導電度。在有機系中CMC-SBMA加入0.2g PEGDA並浸泡1M DEC電解鹽溶液則表現出0.0908 mS/cm的最高離子導電度。另外我們也透過拉曼光譜探討電解鹽離子在電解質中的狀態,進一步驗證上述兩者具備最高離子導電度的原因。因此,雙離子修飾高分子用於膠態或全固態電解質,在離子導電度上能確實提升電化學表現,應用在現今高速發展的各類電子裝置中,能提供不小的幫助。
With the rapid growth of flexible wearable electronic devices, electrolytes play a critical role alongside electrode materials in determining performance. To meet the mechanical strength requirements of these devices, the use of electrolytes has shifted from liquid to gel or solid-state forms. However, most gel and solid-state electrolytes struggle to match the electrochemical performance of liquid electrolytes, largely due to material selection. This study introduces a zwitterion-modified polymer to enhance gel electrolyte performance. Carboxymethyl cellulose (CMC) was grafted with the zwitterion SBMA via oxa-Michael addition, confirmed using FTIR. Adding betaine, a small-molecule zwitterion, further improved the electrochemical properties to approach those of liquid electrolytes. In aqueous gel electrolytes, water was used as a solvent with glutaraldehyde as a crosslinking agent for mechanical strength. For organic systems, diethyl carbonate (DEC) served as the solvent, with glutaraldehyde and PEGDA added to maintain structure and absorb DEC into the polymer matrix. Electrochemical impedance spectroscopy (EIS) revealed that CMC-SBMA in the aqueous system achieved an ionic conductivity of 12.26 mS/cm at 150% swelling, while the organic system reached 0.0908 mS/cm with 0.2g PEGDA. Raman spectroscopy further explained the ion behavior supporting these results. This work demonstrates that zwitterion-modified polymers can significantly enhance the electrochemical performance of gel or solid-state electrolytes, offering potential for high-performance electronic devices.
1. Hassan, Qusay, Aws Zuhair Sameen, and Hayder M. Salman. "Hydrogen energy horizon: balancing opportunities and challenges." Energy Harvesting and Systems 11.1 (2024): 20220132.
2. Zhang, Yadi, et al. "Sodium‐ion capacitors: materials, mechanism, and challenges." ChemSusChem 13.10 (2020): 2522-2539.
3. Wang, Zifeng, et al. "Hydrogel electrolytes for flexible aqueous energy storage devices." Advanced Functional Materials 28.48 (2018): 1804560.
4. Liu, Wei, et al. "Flexible and stretchable energy storage: recent advances and future perspectives." Advanced materials 29.1 (2017): 1603436.
5. Li, La, et al. "Recent advances in flexible/stretchable supercapacitors for wearable electronics." Small 14.43 (2018): 1702829.
6. Li, Lin, et al. "Advances and challenges for flexible energy storage and conversion devices and systems." Energy & Environmental Science 7.7 (2014): 2101-2122.
7. Wang, Xianfu, et al. "Flexible energy‐storage devices: design consideration and recent progress." Advanced materials 26.28 (2014): 4763-4782.
8. Mao, Lijuan, et al. "Mechanical analyses and structural design requirements for flexible energy storage devices." Advanced Energy Materials 7.23 (2017): 1700535.
9. Zhong, Cheng, et al. "A review of electrolyte materials and compositions for electrochemical supercapacitors." Chemical Society Reviews 44.21 (2015): 7484-7539.
10. Yan, Jun, et al. "Recent advances in design and fabrication of electrochemical supercapacitors with high energy densities." Advanced Energy Materials 4.4 (2014): 1300816.
11. Pei, Zengxia, et al. "Texturing in situ: N, S-enriched hierarchically porous carbon as a highly active reversible oxygen electrocatalyst." Energy & Environmental Science 10.3 (2017): 742-749.
12. Wang, Hua, Yun Yang, and Lin Guo. "Nature‐inspired electrochemical energy‐storage materials and devices." Advanced Energy Materials 7.5 (2017): 1601709.
13. Bard, Allen J., Larry R. Faulkner, and Henry S. White. Electrochemical methods: fundamentals and applications. John Wiley & Sons, 2022.
14. 胡啟章. 電化學原理與方法. 五南圖書出版股份有限公司, 2002.
15. Dourado, André HB. "Electric double layer: the good, the bad, and the beauty." Electrochem 3.4 (2022): 789-808.
16. Zhong, Cheng, et al. "A review of electrolyte materials and compositions for electrochemical supercapacitors." Chemical Society Reviews 44.21 (2015): 7484-7539.
17. Suo, Liumin, et al. "“Water-in-salt” electrolyte enables high-voltage aqueous lithium-ion chemistries." Science 350.6263 (2015): 938-943.
18. Chun, Sang-Eun, et al. "Design of aqueous redox-enhanced electrochemical capacitors with high specific energies and slow self-discharge." Nature communications 6.1 (2015): 7818.
19. Yu, Minghao, et al. "Boosting the energy density of carbon‐based aqueous supercapacitors by optimizing the surface charge." Angewandte Chemie 129.20 (2017): 5546-5551.
20. Gao, Qiang, et al. "Exploring the large voltage range of carbon/carbon supercapacitors in aqueous lithium sulfate electrolyte." Energy & Environmental Science 5.11 (2012): 9611-9617.
21. Huddleston, Jonathan G., et al. "Characterization and comparison of hydrophilic and hydrophobic room temperature ionic liquids incorporating the imidazolium cation." Green chemistry 3.4 (2001): 156-164.
22. Zhou, Zhi‐Bin, Hajime Matsumoto, and Kuniaki Tatsumi. "Low‐melting, low‐viscous, hydrophobic ionic liquids: 1‐alkyl (alkyl ether)‐3‐methylimidazolium perfluoroalkyltrifluoroborate." Chemistry–A European Journal 10.24 (2004): 6581-6591.
23. Barthel, Josef, et al. "Non-aqueous electrolyte solutions in chemistry and modern technology." Physical and inorganic chemistry. Springer Berlin Heidelberg, 1983.
24. Brandt, A., et al. "Ionic liquids in supercapacitors." MRS bulletin 38.7 (2013): 554-559.
25. Lewandowski, Andrzej, and Maciej Galinski. "Practical and theoretical limits for electrochemical double-layer capacitors." Journal of Power Sources 173.2 (2007): 822-828.
26. Lewandowski, Andrzej, et al. "Performance of carbon–carbon supercapacitors based on organic, aqueous and ionic liquid electrolytes." Journal of Power Sources 195.17 (2010): 5814-5819.
27. Chen, Yao, et al. "High performance supercapacitors based on reduced graphene oxide in aqueous and ionic liquid electrolytes." Carbon 49.2 (2011): 573-580.
28. Xu, Bin, et al. "Highly mesoporous and high surface area carbon: A high capacitance electrode material for EDLCs with various electrolytes." Electrochemistry Communications 10.5 (2008): 795-797.
29. Armand, Michel, et al. "Ionic-liquid materials for the electrochemical challenges of the future." Nature materials 8.8 (2009): 621-629.
30. Francisco, Brian E., et al. "Nanostructured all-solid-state supercapacitor based on Li2S-P2S5 glass-ceramic electrolyte." Applied Physics Letters 100.10 (2012).
31. Ulihin, A. S., Yu G. Mateyshina, and N. F. Uvarov. "All-solid-state asymmetric supercapacitors with solid composite electrolytes." Solid State Ionics 251 (2013): 62-65.
32. Fang, Xudong, and Donggang Yao. "An overview of solid-like electrolytes for supercapacitors." ASME International Mechanical Engineering Congress and Exposition. Vol. 56284. American Society of Mechanical Engineers, 2013.
33. Meka, Venkata S., et al. "A comprehensive review on polyelectrolyte complexes." Drug discovery today 22.11 (2017): 1697-1706.
34. Choudhury, N. A., S. Sampath, and A. K. Shukla. "Hydrogel-polymer electrolytes for electrochemical capacitors: an overview." Energy & Environmental Science 2.1 (2009): 55-67.
35. Duay, Jonathon, et al. "Highly flexible pseudocapacitor based on freestanding heterogeneous MnO 2/conductive polymer nanowire arrays." Physical Chemistry Chemical Physics 14.10 (2012): 3329-3337.
36. Huang, Cheng‐Wei, et al. "Gel electrolyte derived from poly (ethylene glycol) blending poly (acrylonitrile) applicable to roll‐to‐roll assembly of electric double layer capacitors." Advanced Functional Materials 22.22 (2012): 4677-4685.
37. Sudhakar, Y. N., M. Selvakumar, and D. Krishna Bhat. "LiClO 4-doped plasticized chitosan and poly (ethylene glycol) blend as biodegradable polymer electrolyte for supercapacitors." Ionics 19 (2013): 277-285.
38. Ramasamy, Chandrasekaran, Jesús Palma del vel, and Marc Anderson. "An activated carbon supercapacitor analysis by using a gel electrolyte of sodium salt-polyethylene oxide in an organic mixture solvent." Journal of Solid State Electrochemistry 18 (2014): 2217-2223.
39. Wang, Xianfu, et al. "Three-dimensional hierarchical GeSe2 nanostructures for high performance flexible all-solid-state supercapacitors." Advanced Materials (Deerfield Beach, Fla.) 25.10 (2012): 1479-1486.
40. Niu, Zhiqiang, et al. "Highly stretchable, integrated supercapacitors based on single-walled carbon nanotube films with continuous reticulate architecture." Advanced materials (Deerfield Beach, Fla.) 25.7 (2012): 1058-1064.
41. Yuan, Longyan, et al. "Polypyrrole-coated paper for flexible solid-state energy storage." Energy & Environmental Science 6.2 (2013): 470-476.
42. Wang, Zifeng, et al. "Hydrogel electrolytes for flexible aqueous energy storage devices." Advanced Functional Materials 28.48 (2018): 1804560.
43. Maitra, Jaya, and Vivek Kumar Shukla. "Cross-linking in hydrogels-a review." Am. J. Polym. Sci 4.2 (2014): 25-31.
44. Bakarich, Shannon E., et al. "Recovery from applied strain in interpenetrating polymer network hydrogels with ionic and covalent cross-links." Soft Matter 8.39 (2012): 9985-9988.
45. Hager, Martin D., et al. "Self‐healing materials." Advanced Materials 22.47 (2010): 5424-5430.
46. Liu, He, et al. "Zwitterionic copolymer-based and hydrogen bonding-strengthened self-healing hydrogel." RSC advances 5.42 (2015): 33083-33088.
47. Wei, Zengjiang, et al. "Autonomous self-healing of poly (acrylic acid) hydrogels induced by the migration of ferric ions." Polymer Chemistry 4.17 (2013): 4601-4605.
48. Huang, Yan, et al. "A self-healable and highly stretchable supercapacitor based on a dual crosslinked polyelectrolyte." Nature communications 6.1 (2015): 1-8.
49. Luo, Feng, et al. "Oppositely charged polyelectrolytes form tough, self-healing, and rebuildable hydrogels." Advanced materials 27.17 (2015): 2722-2727.
50. Kakuta, Takahiro, et al. "Preorganized hydrogel: self-healing properties of supramolecular hydrogels formed by polymerization of host-guest-monomers that contain cyclodextrins and hydrophobic guest groups." Advanced Materials (Deerfield Beach, Fla.) 25.20 (2013): 2849-2853.
51. Zhang, Hongji, Hesheng Xia, and Yue Zhao. "Poly (vinyl alcohol) hydrogel can autonomously self-heal." ACS Macro Letters 1.11 (2012): 1233-1236.
52. Phadke, Ameya, et al. "Rapid self-healing hydrogels." Proceedings of the National Academy of Sciences 109.12 (2012): 4383-4388.
53. Hu, Lei, Xinjian Cheng, and Aiqing Zhang. "A facile method to prepare UV light-triggered self-healing polyphosphazenes." Journal of materials science 50 (2015): 2239-2246.
54. Hager, Martin D., et al. "Self‐healing materials." Advanced Materials 22.47 (2010): 5424-5430.
55. Taylor, Danielle Lynne, and Marc in het Panhuis. "Self‐healing hydrogels." Advanced Materials 28.41 (2016): 9060-9093.
56. Lee, Geumbee, et al. "Fabrication of a stretchable and patchable array of high performance micro-supercapacitors using a non-aqueous solvent based gel electrolyte." Energy & Environmental Science 8.6 (2015): 1764-1774.
57. Zang, Limin, et al. "Design and fabrication of an all-solid-state polymer supercapacitor with highly mechanical flexibility based on polypyrrole hydrogel." ACS applied materials & interfaces 9.39 (2017): 33941-33947.
58. Wang, Kai, et al. "Chemically crosslinked hydrogel film leads to integrated flexible supercapacitors with superior performance." Advanced materials 45 (2015): 7451-7457.
59. Hu, Minmin, et al. "All‐solid‐state flexible fiber‐based MXene supercapacitors." Advanced Materials Technologies 2.10 (2017): 1700143.
60. Li, Panpan, et al. "Stretchable all‐gel‐state fiber‐shaped supercapacitors enabled by macromolecularly interconnected 3D graphene/nanostructured conductive polymer hydrogels." Advanced Materials 30.18 (2018): 1800124.
61. Li, Huili, et al. "Ultraflexible and tailorable all-solid-state supercapacitors using polyacrylamide-based hydrogel electrolyte with high ionic conductivity." Nanoscale 9.46 (2017): 18474-18481.
62. Xu, Ting, et al. "Biopolymer-based hydrogel electrolytes for advanced energy storage/conversion devices: Properties, applications, and perspectives." Energy Storage Materials 48 (2022): 244-262.
63. Dai, Hongliu, et al. "Polymer gel electrolytes for flexible supercapacitors: Recent progress, challenges, and perspectives." Energy Storage Materials 34 (2021): 320-355.
64. Raghavan, Akshaya, and Sutapa Ghosh. "Recent Advancements on Biopolymer‐Based Flexible Electrolytes for Next‐Gen Supercaps and Batteries: A Brief Sketch." ChemistrySelect 6.47 (2021): 13647-13663.
65. Armelin, Elaine, et al. "Current status and challenges of biohydrogels for applications as supercapacitors and secondary batteries." Journal of materials chemistry A 4.23 (2016): 8952-8968.
66. Mo, Funian, et al. "Zwitterionic sulfobetaine hydrogel electrolyte building separated positive/negative ion migration channels for aqueous Zn‐MnO2 batteries with superior rate capabilities." Advanced Energy Materials 10.16 (2020): 2000035.
67. Liu, Zhuoxin, et al. "A mechanically durable and device-level tough Zn-MnO2 battery with high flexibility." Energy Storage Materials 23 (2019): 636-645.
68. Zhao, Jian, et al. "Preparation of the polyelectrolyte complex hydrogel of biopolymers via a semi-dissolution acidification sol-gel transition method and its application in solid-state supercapacitors." Journal of Power Sources 378 (2018): 603-609.
69. Hsu, Helen H., et al. "Mussel-inspired autonomously self-healable all-in-one supercapacitor with biocompatible hydrogel." ACS Sustainable Chemistry & Engineering 8.18 (2020): 6935-6948.
70. Huang, Hailong, et al. "A powder self‐healable hydrogel electrolyte for flexible hybrid supercapacitors with high energy density and sustainability." Small 17.10 (2021): 2006807.
71. Na, Ruiqi, et al. "Mechanically robust hydrophobic association hydrogel electrolyte with efficient ionic transport for flexible supercapacitors." Chemical Engineering Journal 374 (2019): 738-747.
72. Yan, Jun, et al. "Recent advances in design and fabrication of electrochemical supercapacitors with high energy densities." Advanced Energy Materials 4.4 (2014): 1300816.
73. Pei, Zengxia, et al. "Texturing in situ: N, S-enriched hierarchically porous carbon as a highly active reversible oxygen electrocatalyst." Energy & Environmental Science 10.3 (2017): 742-749.
74. Wang, Hua, Yun Yang, and Lin Guo. "Nature‐inspired electrochemical energy‐storage materials and devices." Advanced Energy Materials 7.5 (2017): 1601709.
75. Hu, Mengmeng, et al. "A flour-based one-stop supercapacitor with intrinsic self-healability and stretchability after self-healing and biodegradability." Energy Storage Materials 21 (2019): 174-179.
76. Rinaudo, Marguerite. "Chitin and chitosan: Properties and applications." Progress in polymer science 31.7 (2006): 603-632.
77. Kumar, MNV Ravi, et al. "Chitosan chemistry and pharmaceutical perspectives." Chemical reviews 104.12 (2004): 6017-6084.
78. Rinaudo, Marguerite, G. Pavlov, and Jacques Desbrieres. "Influence of acetic acid concentration on the solubilization of chitosan." Polymer 40.25 (1999): 7029-7032.
79. Tabassum, Nishat, Shoeb Ahmed, and M. Azam Ali. "Chitooligosaccharides and their structural-functional effect on hydrogels: A review." Carbohydrate Polymers 261 (2021): 117882.
80. Suginta, Wipa, Panida Khunkaewla, and Albert Schulte. "Electrochemical biosensor applications of polysaccharides chitin and chitosan." Chemical reviews 113.7 (2013): 5458-5479.
81. Fu, Li, et al. "A solid-state electrochemical sensing platform based on a supramolecular hydrogel." Sensors and Actuators B: Chemical 262 (2018): 326-333.
82. Khalil, H. P. S. A., et al. "M. Haafiz, MK, and Dungani, R.(2016)." A review on chitosan-cellulose blends and nanocellulose reinforced chitosan biocomposites: Properties and their applications,"." Carbohydr. Polym 150: 216-226.
83. Boucard, Nadege, Christophe Viton, and Alain Domard. "New aspects of the formation of physical hydrogels of chitosan in a hydroalcoholic medium." Biomacromolecules 6.6 (2005): 3227-3237.
84. Shen, Xiaoping, et al. "Hydrogels based on cellulose and chitin: fabrication, properties, and applications." Green chemistry 18.1 (2016): 53-75.
85. Farion, I. A., et al. "Functionalization of chitosan with carboxylic acids and derivatives of them: Synthesis issues and prospects of practical use: A review." Express Polymer Letters 12.12 (2018): 1081-1105.
86. Lin, Chen-Hsueh, et al. "Chitosan with various degrees of carboxylation as hydrogel electrolyte for pseudo solid-state supercapacitors." Journal of Power Sources 494 (2021): 229736.
87. Liao, Kuan-Yi, Wei-Cheng Li, and Ten-Chin Wen. "Constructing supercapacitors with biopolymer bearing zwitterion as hydrogel electrolyte and binder for superior performance at− 40° C." Journal of Power Sources 598 (2024): 234191.
88. Klemm, Dieter, et al. "Cellulose: fascinating biopolymer and sustainable raw material." Angewandte chemie international edition 44.22 (2005): 3358-3393.
89. Liu, Wei, et al. "Sustainable preparation of cellulose nanofibrils via choline chloride-citric acid deep eutectic solvent pretreatment combined with high-pressure homogenization." Carbohydrate Polymers 267 (2021): 118220.
90. Li, Xiaoyun, et al. "Production of 5-hydroxymethylfurfural and levulinic acid from lignocellulosic biomass and catalytic upgradation." Industrial Crops and Products 130 (2019): 184-197.
91. Moon, Robert J., et al. "Cellulose nanomaterials review: structure, properties and nanocomposites." Chemical Society Reviews 40.7 (2011): 3941-3994.
92. Wang, Hui, et al. "Sustainable preparation of bifunctional cellulose nanocrystals via mixed H2SO4/formic acid hydrolysis." Carbohydrate Polymers 266 (2021): 118107.
93. Fall, Andreas B., et al. "A physical cross-linking process of cellulose nanofibril gels with shear-controlled fibril orientation." Soft Matter 9.6 (2013): 1852-1863.
94. Ciolacu, Diana, et al. "Physically and chemically cross-linked cellulose cryogels: Structure, properties and application for controlled release." Carbohydrate polymers 151 (2016): 392-400.
95. Bashir, Shahid, et al. "Fundamental concepts of hydrogels: Synthesis, properties, and their applications." Polymers 12.11 (2020): 2702.
96. Qu, Bing, et al. "Preparation of sodium carboxymethylcellulose/poly (methyl acrylate) IPN hydrogels and their application for adsorption." Journal of Applied Polymer Science 131.22 (2014).
97. Pinkert, André, Kenneth N. Marsh, and Shusheng Pang. "Reflections on the solubility of cellulose." Industrial & Engineering Chemistry Research 49.22 (2010): 11121-11130.
98. Rahman, Md Saifur, et al. "Recent developments of carboxymethyl cellulose." Polymers 13.8 (2021): 1345.
99. Revol, J‐F., and D. A. I. Goring. "On the mechanism of the mercerization of cellulose in wood." Journal of Applied Polymer Science 26.4 (1981): 1275-1282.
100. Scott, Donald S., et al. "The role of temperature in the fast pyrolysis of cellulose and wood." Industrial & engineering chemistry research 27.1 (1988): 8-15.
101. Fengel, Dietrich. "The ultrastructure of cellulose from wood: Part 1: Wood as the basic material for the isolation of cellulose." Wood Science and Technology 3.3 (1969): 203-217.
102. Kadry, Ghada, Ehab I. Aboelmagd, and Maha M. Ibrahim. "Cellulosic-based hydrogel from biomass material for removal of metals from waste water." Journal of Macromolecular Science, Part A 56.10 (2019): 968-981.
103. Erfani, Amir, et al. "Interactions between biomolecules and zwitterionic moieties: a review." Biomacromolecules 21.7 (2020): 2557-2573.
104. Paleg, Leslie G., George R. Stewart, and Joseph W. Bradbeer. "Proline and glycine betaine influence protein solvation." Plant Physiology 75.4 (1984): 974-978.
105. Arakawa, Tsutomu, and Serge N. Timasheff. "Preferential interactions of proteins with solvent components in aqueous amino acid solutions." Archives of biochemistry and biophysics 224.1 (1983): 169-177.
106. Al Hassan, Mohamad, et al. "Unraveling salt tolerance mechanisms in halophytes: a comparative study on four Mediterranean Limonium species with different geographic distribution patterns." Frontiers in Plant Science 8 (2017): 1438.
107. Bretscher, Mark S., and Martin C. Raff. "Mammalian plasma membranes." Nature 258.5530 (1975): 43-49.
108. Chen, Fan, et al. "Rational fabrication of anti‐freezing, non‐drying tough organohydrogels by one‐pot solvent displacement." Angewandte Chemie 130.22 (2018): 6678-6681.
109. Rong, Qinfeng, et al. "Anti‐freezing, conductive self‐healing organohydrogels with stable strain‐sensitivity at subzero temperatures." Angewandte Chemie International Edition 56.45 (2017): 14159-14163.
110. Sui, Xiaojie, et al. "Zwitterionic osmolyte‐based hydrogels with antifreezing property, high conductivity, and stable flexibility at subzero temperature." Advanced Functional Materials 30.7 (2020): 1907986.
111. Zhang, Xiong‐Fei, et al. "Inorganic salts induce thermally reversible and anti‐freezing cellulose hydrogels." Angewandte Chemie International Edition 58.22 (2019): 7366-7370.
112. Mo, Funian, et al. "A flexible rechargeable aqueous zinc manganese-dioxide battery working at− 20° C." Energy & Environmental Science 12.2 (2019): 706-715.
113. Zhu, Minshen, et al. "Antifreezing hydrogel with high zinc reversibility for flexible and durable aqueous batteries by cooperative hydrated cations." Advanced Functional Materials 30.6 (2020): 1907218.
114. Wei, Peiling, et al. "Conductive self-healing nanocomposite hydrogel skin sensors with antifreezing and thermoresponsive properties." ACS applied materials & interfaces 12.2 (2019): 3068-3079.
115. Lowe, Andrew B., and Charles L. McCormick. "Synthesis and solution properties of zwitterionic polymers." Chemical reviews 102.11 (2002): 4177-4190.
116. Lalani, Reza, and Lingyun Liu. "Electrospun zwitterionic poly (sulfobetaine methacrylate) for nonadherent, superabsorbent, and antimicrobial wound dressing applications." Biomacromolecules 13.6 (2012): 1853-1863.
117. Mo, Funian, et al. "Zwitterionic sulfobetaine hydrogel electrolyte building separated positive/negative ion migration channels for aqueous Zn‐MnO2 batteries with superior rate capabilities." Advanced Energy Materials 10.16 (2020): 2000035.
118. Choe, ChunSik, Jürgen Lademann, and Maxim E. Darvin. "Depth profiles of hydrogen bound water molecule types and their relation to lipid and protein interaction in the human stratum corneum in vivo." Analyst 141.22 (2016): 6329-6337.
119. Bag, Min A., and Loreto M. Valenzuela. "Impact of the hydration states of polymers on their hemocompatibility for medical applications: a review." International journal of molecular sciences 18.8 (2017): 1422.
120. Tiyapiboonchaiya, Churat, et al. "The zwitterion effect in high-conductivity polyelectrolyte materials." Nature materials 3.1 (2004): 29-32.
121. Finney, Aaron R., et al. "Ion association in lanthanide chloride solutions." Chemistry–A European Journal 25.37 (2019): 8725-8740.
122. Byrne, Nolene, et al. "The zwitterion effect in ionic liquids: towards practical rechargeable lithium‐metal batteries." Advanced Materials 17.20 (2005): 2497-2501.
123. Byrne, Nolene, et al. "The additive effect of zwitterion and nano-particles on ion dissociation in polyelectrolytes." Electrochimica acta 50.13 (2005): 2733-2738.
124. Byrne, Nolene, et al. "Effect of zwitterion on the lithium solid electrolyte interphase in ionic liquid electrolytes." Journal of power sources 184.1 (2008): 288-296.
125. Yamaguchi, Seitaro, et al. "Effect of a pyrrolidinium zwitterion on charge/discharge cycle properties of Li/LiCoO2 and graphite/Li cells containing an ionic liquid electrolyte." Journal of Power Sources 331 (2016): 308-314.
126. Li, Wei-Cheng, Ren-Kai Chen, and Ten-Chin Wen. "The role of nano-hydroxyapatite bearing zwitterion within carboxylated chitosan hydrogel electrolyte in improving supercapacitor performance." Electrochimica Acta 466 (2023): 143064.
127. Mo, Funian, et al. "Zwitterionic sulfobetaine hydrogel electrolyte building separated positive/negative ion migration channels for aqueous Zn‐MnO2 batteries with superior rate capabilities." Advanced Energy Materials 10.16 (2020): 2000035.
128. El-Azazy, Marwa. "Introductory chapter: infrared spectroscopy-A synopsis of the fundamentals and applications." Infrared spectroscopy-principles, advances, and applications (2018): 1-10.
129. Liu, Kunxiang, et al. "Raman spectroscopy: A novel technology for gastric cancer diagnosis." Frontiers in Bioengineering and Biotechnology 10 (2022): 856591.
130. Cuba-Chiem, Linh T., et al. "In situ particle film ATR FTIR spectroscopy of carboxymethyl cellulose adsorption on talc: binding mechanism, pH effects, and adsorption kinetics." Langmuir 24.15 (2008): 8036-8044.
131. Cael, John J., Jack L. Koenig, and John Blackwell. "Infrared and raman spectroscopy of carbohydrates: Part IV. Identification of configuration-and conformation-sensitive modes for D-glucose by normal coordinate analysis." Carbohydrate Research 32.1 (1974): 79-91.
132. Smith, Brian C. "The carbonyl group, part V: Carboxylates—Coming clean." (2018): 20-23.
133. Lalani, Reza, and Lingyun Liu. "Synthesis, characterization, and electrospinning of zwitterionic poly (sulfobetaine methacrylate)." Polymer 52.23 (2011): 5344-5354.
134. Kozak, Maciej, and Ludwik Domka. "Adsorption of the quaternary ammonium salts on montmorillonite." Journal of Physics and Chemistry of Solids 65.2-3 (2004): 441-445.
135. Johnston, S. F., et al. "Spectroscopic studies of triflate ion association in polymer gel electrolytes and their constituents." Solid State Ionics 90.1-4 (1996): 39-48.
136. Sandner, B., et al. "Ionic association in oligo (ethylene glycol)-lithium triflat solutions as studied by FT Raman spectroscopy." Solid State Ionics 83.1-2 (1996): 87-97.
137. Radziuk, Darya V., and Helmuth Möhwald. "Spectroscopic investigation of composite polymeric and monocrystalline systems with ionic conductivity." Polymers 3.2 (2011): 674-692.