研究生: |
蔡勝宏 Tsai, Sheng-Hung |
---|---|
論文名稱: |
超臨界翼型之穿音速顫振:數值模擬與實驗研究 Transonic Flutter of Supercritical Airfoil: Numerical Simulation and Experiment |
指導教授: |
黃捷楷
Currao, Gaetano M.D. |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
論文出版年: | 2025 |
畢業學年度: | 113 |
語文別: | 英文 |
論文頁數: | 69 |
中文關鍵詞: | 流固耦合(FSI) 、穿音速風洞 、顫振 、極限環震盪(LCO) 、氣動彈性 、震波邊界層交互作用(SWBLI) 、懸臂機翼 、超臨界翼型 、3D列印彈性機翼 |
外文關鍵詞: | Fluid Structure Interaction (FSI), Transonic Wind Tunnel, Flutter, Limit Cycle Oscillation (LCO), Aeroelasticity, Shock Wave Boundary Layer Interaction (SWBLI), Cantilevered Wing, Supercritical Airfoil, 3D Printed Camber |
相關次數: | 點閱:56 下載:4 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究旨在探討由鈦合金金屬懸壁板與3D列印的彈性塑膠所組成的超臨界機翼(NASA SC(2)-0012),在穿音速流動條件下的氣動彈性響應。本研究聚焦於在不同攻角下所引發的顫振(Flutter)與極限環震盪(LCO)之特性以及物理屬性。整體的目標是透過數值模擬與實驗驗證,提升對氣動彈性現象的預測之可靠性。數值模擬結果已成功透過實驗數據進行驗證,兩者在系統之自然頻率(彎曲模態 75 Hz,扭轉模態 190 Hz )及其動態響應皆展現了良好的一致性。在高初始攻角( 8° )下,系統進入了接近極限環震盪(LCO)的狀態。對此現象的分析顯示,其為以扭轉為主導之失速顫振,發生於約 139 Hz 的頻率。
This study aims to investigate the aeroelastic response of a cantilevered supercritical wing (NASA SC(2)-0012), composed of 3D printed flexible plastic camber and a titanium alloy plate, under transonic flow condition (? = 0.8). This study focus on the characteristics and physical properties of flutter and limit cycle oscillation (LCO) induced at different angle of attack. The overall objective is to enhance the predictive reliability for aeroelastic phenomena through the numerical simulation and experimental validation. The numerical simulation was successfully validated against experimental data, showing good agreement for the natural frequency of the test model (Bending mode at 75 ?? and torsional mode at 190 ??) and its dynamic response. At high initial angle of attack (8°), the system was found to enter a limit cycle oscillation (LCO). Analysis of this instability shows it as torsion dominated stall flutter, occurring at a frequency of 139 ??.
[1] Earl H Dowell. Nonlinear aeroelasticity. In A Modern Course in Aeroelasticity, p. 487–529. Springer, 2015.
[2] C.M. Denegri. Limit cycle oscillation flight test results of a fighter with external stores. AIAA Journal, 2000. 37(5): p. 761–769.
[3] H. L. Seegmiller, J. G. Marvin and L. L. Levy Jr. Steady and Unsteady Transonic Flow. AIAA Journal, 1978. 16(12): p. 1262–1270.
[4] Pradeepa T. Karnick and Kartik Venkatraman. Shock–boundary layer interaction and energetics in transonic flutter. J. Fluid Mech, 2017, vol. 832: p. 212–240.
[5] Seshendra Palakurthy, Avery Schemmel, Anup Zope, Eric Collins and Shanti Bhu-shan. Investigation of Chaotic Flutter Induced by Shock-Boundary-Layer Interaction. AIAA Journal, 2025. 64(4): p. 1243–1261.
[6] David J. Lusher, Neil D. Sandham. Shock-Wave/Boundary-Layer Interactions in Transitional Rectangular Duct Flows. Flow Turbulence and Combustion, 2022. 105(6): p.649–670.
[7] Holger Babinsky and Hideaki Ogawa. SBLI control for wings and inlets. Shock Waves, 2008. 18: p.89–86.
[8] RICHARD T. WHITCOMB. A STUDY OF THE ZERO-LIFT DRAG-RISE CHARACTERISTICS OF WING-BODY COMBINATIONS NEAR THE SPEED OF SOUND. NACA-TR-1273
[9] A. Nakayama. Characteristics of the flow around conventional and supercritical air-foils. Journal of Fluid Mechanics, 1985. 160: p. 155–179.
[10] Q. Xiao, H. M. Tsai and F. Liu. Numerical Study of Transonic Buffet on a Super-critical Airfoil. AIAA, 2006. 44(3): p. 620–628.
[11] Ramji Kamakoti, Wei Shyy. Fluid–structure interaction for aeroelastic applications. Progress in Aerospace Sciences, 2004. 40: p. 535–558.
[12] Raymond L. Bisplinghoff, Holt Ashley, Robert L. Halfman. Aeroelasticity. Dover Publications, 1996.
[13] Earl H Dowell. A Modern Course in Aeroelasticity, p. 487–529. Springer, 2015.
[14] J. D. CROUCH, A. GARBARUK, D. MAGIDOV and A. TRAVIN. Origin of transonic buffet on aerofoils. Journal of Fluid Mechanics, 2009. 628: p. 357–369.
[15] Singh, M. and K. Venkatraman. Transonic buffet in the Benchmark Supercritical Wing. AIAA SciTech 2023 Forum, 2023.
[16] Nicholas F. Giannelis, Oleg Levinski, Gareth A. Vio. Influence of Mach number and angle of attack on the two-dimensional transonic buffet phenomenon. Aerospace Science and Technology, 2018. 78: p. 89–101.
[17] A. R. Collar. The Expanding Domain of Aeroelasticity. Journal of the Royal Aero-nautical Society, 1946. 50(428): p. 613–636.
[18] I. E. Garrick and Wilmer H. Reed III. Historical Development of Aircraft Flutter. Journal of Aircraft, 1981. 18(11): p. 897912.
[19] Gaetano M.D. Currao. Transonic leading-edge stall flutter: modelling, simulations and experiments. Journal of Fluid Mechanics, 2024. 984: p.A54.
[20] Himanshu Shukla and Mayuresh J. Patil. Controlling Limit Cycle Oscillation Ampli-tudes in Nonlinear Aeroelastic Systems. Journal of Aircraft, 2017. 54(5): p. 1335–1347.
[21] E.H. Dowell, J.P. Thomas, K.C. Hall. Transonic limit cycle oscillation analysis using reduced order aerodynamic models. Journal of Fluid Mechanics, 2007. 47(1–3): p.270–284.
[22] Anderson, J.D. and C.P. Cadou. Fundamentals of Aerodynamics. 2023: McGraw Hill.