簡易檢索 / 詳目顯示

研究生: 郭武彰
Kuo, Wu-Chang
論文名稱: 點與線之有限位移螺旋的線幾何研究
Line Geometry of the Finite Displacement Screws of Points and Lines
指導教授: 黃金沺
Huang, Chin-Tien
Bahram Ravani
Bahram Ravani
學位類別: 博士
Doctor
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 147
中文關鍵詞: 過指定位移對應點螺旋向量場對應線法向面有限位移螺旋系統螺旋互逆線集合線幾何
外文關鍵詞: Homologous Points, Homologous Lines, Linear Line Complex, Over Specified Displacement, Regulus, Congruence, Nullplane, Helicoidal Vector Field, Reciprocal, Finite Displacement, Line Geometry, Line Variety, Screw, Screw System
相關次數: 點閱:104下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 線幾何學之研究,自於蒲律克 (Plücker) 提出了六參數之直線坐標式開始發展。空間中之直線,經由線性組合可形成特殊幾何外觀之線集合。另一方面,使用六參數坐標式定義螺旋為一帶有螺距的直線,並用於剛體的瞬時運動與受力狀態之研究,發展出螺旋理論。其主要優點為,瞬時運動螺旋與扳鉗具有線性性質,可進行線性運算進而形成螺旋系統。這使得螺旋理論成為空間機構之極佳分析工具,例如應用於串列式及並列式機器手臂之奇異構型與剛性分析。線集合與螺旋系統在組成的方式上,非常類似,其各自由獨立直線與基底螺旋經線性組合而得。經由剛體質點於瞬時運動之速度指向,可建構出瞬時運動螺旋所對應的線集合Linear Line Complex (LLC)。同時,應用互逆運算與線集合的交集原理,可以得到螺旋系統所對應之各式線集合。所以,直線與線集合可視為螺旋之建構元素。
    已有學者針對剛體之有限位移,佐以新的螺距定義經代數運算而得到具有線性性質的有限位移螺旋。然而,鮮少研究是以線幾何學之觀點來求證有限位移具有線性性質。本論文採用已於瞬時螺旋運動中被証實的線幾何理論,研究點位移與線位移情況,得到了法向面(Nullplane) 與螺旋向量場 (Helicoidal Vector Field) 之存在定義。藉由法向面上之線叢 (Pencil of Lines),建構出有限位移螺旋所對應之LLC,也証實其具有線性性質。我們也應用線幾何學的交集理論,研究不完全指定位移下之有限位移螺旋系統所對應的線集合。
    在點的有限位移方面,法向面位於對應點之中點,其指向相同於對應點之指向。空間中所有法向面上的線叢形成了LLC,此螺旋向量場之螺距為沿螺旋軸的二分之一位移量除以二分之一旋轉量的正切值。二組對應點與一組對應點之不完全指定位移所對應的線集合分別是Congruence和線叢。在線的有限位移方面,法向面位於對應線之交會點,其指向相同於對應線之內角平分線方向。空間中所有法向面上的線叢形成了LLC,此螺旋向量場之螺距為沿螺旋軸位移量除以旋轉量的正弦值。單一組對應線之不完全指定位移所對應的線集合是為一個Regulus。
    將線幾何學應用於剛體位移之求解問題,三組對應點所對應到的三個線集合,提供了五條線性獨立直線,可合成出位移螺旋及其大小。二組對應線所對應到的二個線集合,同樣地提供了五條線性獨立直線以合成出位移螺旋。在引用了最佳化LLC求解法及誤差評估準則後,以直線為位置參考之過指定位移亦得以求解,極具實務應用價值。
    經由本論文的証明,點與線之有限位移於其特定的螺距定義下,可使其位移螺旋具有線性性質,進而可由交集法得到有限位移螺旋系統對應之線集合。本論文提出的論點,擴展了線幾何學的運用範圍,使得今後在研究瞬時運動螺旋與有限位移螺旋之時,具有統一的觀點與方法。

    The research of line geometry stems from Plücker’s unique 6-tuple vector representation of a line in the three-dimensional space. In line geometry, we are concerned with line varieties, which are composed of linearly dependent lines of certain ranks. In kinematics, a screw can be thought of as a line with an associated pitch, and a screw is also represented by a 6-tuple vector form similar to the Plücker coordinates of a line. Screw theory has been shown to be a great tool in studying the instantaneous kinematics and statics of rigid-body systems because instantaneous screws and wrenches have linear properties and form screw systems. These linear features provide efficient methods for investigating spatial mechanisms, such as analyzing instantaneous motion, singularities and stiffness of serial and parallel manipulators. A line variety and a screw system are constructed similarly by the linear combinations of linearly independent lines and screws, respectively. Furthermore, there is a one-to-one correspondence between a screw and a line variety. In the context of instantaneous kinematics, all the lines normal to the velocity of every point of a rigid body undergoing a screw motion constitute a line variety called linear line complex. By using the intersections of line varieties and the notion of reciprocity, we can also obtain the correspondence between line varieties and screw systems. Therefore lines and line varieties are the basic entities in the research of screw geometry. In this dissertation, line geometry will be employed to investigate the finite kinematics of a rigid body.
    Research in the past two decades had introduced new definition of pitch and obtained screw systems pertaining to finite displacements. However, there was a lack of investigation into the linearity of finite screws using line geometry. This dissertation extends the research of line geometry in instantaneous screws to that in finite screws. As a result, the nullplane and helicoidal vector field are found in the displacements of point and line elements of a rigid body. The linear line complex associated with a finite displacement screw, which is composed of the pencils of lines on all the nullplanes in the three-dimensional space, is also found. Furthermore, line varieties corresponding to the finite screw systems associated with point and line displacements are obtained by the intersections of linear line complexes.
    For the finite displacement of a point, the nullplane passes through the midpoint of the pair of homologous points. The nullplane is perpendicular to the line segment connecting the homologous points. All the pencils of lines on the nullplanes constitute the linear line complex of the finite screw of the point displacement. According to the helicoidal vector field associated with the screw, the pitch is half-translation divided by the tangent of half-rotation. Moreover, the line varieties correspond to the two-point and one-point incompletely specified displacements are, respectively, a congruence and a pencil of lines.
    For the finite displacement of a line, the nullplane passes through the intersection of a pair of intersecting homologous lines. The direction of nullplane is the same as the internal bisector the pair of homologous lines. All the pencils of lines on the nullplanes constitute the linear line complex of the finite screw of the line displacement. According to the helicoidal vector field of the screw, the pitch is the translation divided by the sine of rotation. Furthermore, the line variety corresponds to the one-line incompletely specified displacement is a regulus.
    In this dissertation, the developed line geometry was also used to solve rigid body registration problems. It is well known that the displacement of a rigid body can be determined by three pairs of homologous points. Three pairs of homologous points of a finite displacement provide three pencils of lines that uniquely determine a linear line complex. We select five lines from the three pencils of lines to calculate the linear line complex, which in term gives a unique screw. Another way to specify a displacement is by using two pairs of homologous lines. Two pairs of homologous lines of a finite displacement provide two reguli that uniquely determine a linear line complex. We select five lines from the two reguli to calculate the linear line complex and thus the screw. In addition to exact specifications, we also introduce an approximate algorithm to determine the linear line complex based on the specifications of more than three points or two lines.
    This dissertation has proved, based on line geometry, that the new definition of pitch of finite displacement screws provides linear properties of finite displacements. It gives geometric insight into line varieties which correspond to the finite screw systems associated with point and line displacements. The research presented in this dissertation also helps unify the study of instantaneous kinematics and finite kinemtics by using screws.

    摘 要 I Abstract III 誌 謝 V 目 錄 VI 表 目 錄 X 圖 目 錄 XI 符號說明 XIV 第一章 緒論 1 1-1 前言 1 1-2 文獻回顧 2 1-3 研究動機與目的 7 1-4 本文架構 8 第二章 螺旋與線幾何之基本理論 10 2-1 齊次坐標系統 10 2-2 空間中直線之坐標表示法 10 2-2-1 直線之參數表示法 10 2-2-2 直線之蒲律克坐標式與相關計算 11 2-2-3 直線之線偶矩 12 2-2-4 二直線與其公垂線之交會點 13 2-2-5 直線之坐標轉換 14 2-3 螺旋之基本理論 15 2-3-1 螺旋之坐標表示式 15 2-3-2 螺旋之大小 17 2-3-3 螺旋導引之點位移求解 18 2-3-4 螺旋的線性性質與螺旋系統 19 2-3-5 螺旋與螺旋系統之互逆 21 2-3-6 有限位移螺旋 23 2-3-7 螺旋三角形理論 25 2-3-8 不完全指定位移與螺旋系統 26 2-3-9 二指定點之有限位移的二階螺旋系統 28 2-3-10一指定點之有限位移的四階螺旋系統 31 2-3-11一指定直線之有限位移的三階螺旋系統 33 2-4 線幾何理論基礎 36 2-4-1 線集合之型式 36 2-4-2 Phillips 對於LLC的討論 41 2-4-3 Hunt 對於LLC的討論 44 2-4-4 LLC的退化型式 46 2-4-5 LLC的特性整理 47 2-4-6 以LLC之交集觀察螺旋系統 48 第三章 點位移之線幾何研究 50 3-1 沿z軸螺旋之點位移 50 3-2 對應點之連線所形成的線集合 51 3-3 對應點之法向面及其LLC 52 3-4 點之螺旋位移的LLC 54 3-5 點位移螺旋與其LLC之互逆關係的驗証 55 3-6 點位移螺旋之螺旋向量場與其螺距定義 57 3-7 以LLC求解點位移螺旋 58 3-8 二參考點之不完全指定位移的LLC交集 61 3-9 一參考點之不完全指定位移的LLC之交集 63 第四章 線位移之線幾何研究 66 4-1 直線之螺旋位移 66 4-2 對應線之中線 69 4-3 線位移之LLC 73 4-4 線位移之法向面 74 4-5 線位移螺旋的螺旋向量場 77 4-6 線位移螺旋與其LLC之互逆關係的驗証 80 4-7 一般化直線位移之三階螺旋系統 81 4-8 一般化線位移所對應之線集合 83 4-8-1 以幾何觀點探討一般化直線位移所對應之線集合 83 4-8-2 以數學觀點探討一般化直線位移所對應之線集合 86 4-9 一般化線位移之Regulus的特性討論 88 4-10 以直線為位置參考之完全指定位移 91 4-10-1 二條非平行直線指定剛體位置之有限位移 91 4-10-2 二組對應線,其中一組具有交會點之位移 93 4-10-3 二組對應線形成同坐標之Regulus 95 4-11 點位移與線位移於線幾何之比較 97 第五章 線幾何於有限位移之應用 100 5-1 以三點指定剛體位置之位移螺旋求解範例 100 5-2 以二直線指定剛體位置之位移螺旋求解範例 103 5-3 最佳化LLC演算法 108 5-4 線位移螺旋大小之最佳化 110 5-5 以四直線指定剛體位置之位移螺旋求解範例 111 第六章 總結與展望 118 6-1 總結 118 6-2 未來展望 120 參考文獻 123 附錄 過指定線位移之Mathematica程式 129 自 述 147

    1.Ball, R. S., A Treatise on the Theory of Screws, The University Press, Cambridge, England, 1900.
    2.Ballard, D., and Brown, C., Computer Vision, Prentice Hall, Upper Saddle River, NJ, 1982.
    3.Bottema, O., and Roth, B., Theoretical Kinematics, North-Holland Publishing Company, Amsterdam, 1979.
    4.Chasles, M., “Note sur les propriétés générales du système de deux corps semblables entre eux, placés d’une manière quelconque dans l’espace ;et sur le déplacement fini, ou infiniment petit d’un corps solide libre,” Bulletin des Sciences Mathématiques de Férussac, XIV, pp. 321-336, 1831.
    5.Dai, J. S., “An historical review of the theoretical development of rigid body displacements from Rodrigues parameters to the finite twist,” Mechanism and Machine Theory, Vol. 41, pp. 41-52, 2006.
    6.Denavit, J., and Hartenberg, R. S., “A Kinematic Notation for Lower Pair Mechanisms Based on Matrices,” ASME J. Appl. Mech., Vol. 77, pp. 215-221, 1955.
    7.Dandurand, A., “The Rigidity of Compound Spatial Grids,” Structural Topology, Vol. 10, pp. 43-55, 1984.
    8.Dimentberg, F. M., The Screw Calculus and Its Application in Mechanics(in Russian Izdat. Nauka, Moscow), English Translation, N.A.S.A., 1968.
    9.Eberharter, J. K., and Ravani, B., “Kinematic Registration Using Line Geometry,” Proceedings of the ASME 2004 Design Engineering Technical Conferences and Computer and Information in Engineering Conference, Salt Lake City, Utah, Sept. 28 - Oct. 2, 2004.
    10.Eberharter, J. K., “Computational and Line-Geometric Methods for Rigid Body Motions,” Ph.D. Thesis, Mechanical Engineering Department, Davis Univ. California, 2005.
    11.Erdman, A. G., and Sandor, G. N., Advanced Mechanism Design: Analysis and Synthesis, Englewood Cliffs, NJ: Prentice-Hall, 1984.
    12.Grassmann, H., Die lineale Ausdehnungslehre, ein neuer Zweig der Mathematik, Leipzig: Wiegand. English translation, 1995, by Lloyd Kannenberg, A new branch of mathematics, 1844.
    13.Gray, A., Modern Differential Geometry of Curves and Surfaces, Boca Raton: CRC Press, 1993.
    14.Gray, A., “The Hyperbolic Paraboloid,” Modern Differential Geometry of Curves and Surfaces with Mathematica, 2nd ed. Boca Raton, FL: CRC Press, pp. 297-298 and 449, 1997.
    15.Hao, F., and McCarthy, J. M., “Conditions for Line-Based Singularities in Spatial Plat-form Manipulators,” Journal of Robotic Systems, Vol. 15(1), pp. 43-55, 1998.
    16.Hilbert, B., and Cohn-Vossen, S., Geometry and the Imagination, Chelsea Pub. Co., New York, 1952.
    17.Huang, C., “On the Finite Screw System of the Third Order Associated with a Revolute-Revolute Chain,” Journal of Mechanical Design, Trans. ASME, Vol. 116, pp. 875-883, 1994.
    18.Huang, C., and Roth, B., “Analytic Expressions for the Finite Screw Systems,” Mechanism and Machine Theory, Vol. 29, pp. 207-222, 1994.
    19.Huang, C., “Notes on Screw Product Operations in the Formulations of Successive Finite Displacement,” Journal of Mechanical Design, Trans. ASME, Vol. 119, pp. 434-439, 1997.
    20.Huang, C., and Wang, J. C., “The Finite Screw System Associated with the Displacement of a Line,” Journal of Mechanical Design, Trans. ASME, Vol. 125, pp. 105-109, 2003.
    21.Huang, C., Kuo, W., and Ravani, B., “On the Linear Line Complex and Helicoidal Vector Field Associated with Homologous Lines of a Finite Displacement,” Proceedings of the 12th IFToMM World Congress, Besançon, France, June 18-21, 2007.
    22.Huang, C., Kuo, W., and Ravani, B., “On the Regulus Associated with the Displacement of a Line,” Proceedings of the 2007 ASME International Design Engineering Technical Conferences and Computer and Information in Engineering Conference, Las Vegas, USA, September 4-7, 2007.
    23.Huang, C., Ravani, B., and Kuo, W., “A Geometric Interpretation of Finite Screw Systems Using the Bisecting Linear Line Complex,” Journal of Mechanical Design, Trans. ASME, Vol. 130, 102303-4, 2008.
    24.Huang, C., Kuo, W., and Ravani, B., “On the Linear Line Complex and Helicoidal Vector Field Associated with Homologous Lines of a Finite Displacement,” Mechanism and Machine Theory, Vol. 43, pp. 138-146, 2008.
    25.Hunt, K. H., Kinematic Geometry of Mechanisms, Claredon, Oxford, 1978.
    26.Kuo, W., and Huang, C., “A Line Geometric Approach to Determining Displacements Based on Line Specifications,” Proceedings of the 2008 ASME International Design Engineering Technical Conferences and Computer and Information in Engineering Conference, New York, USA, August 3-6, 2008.
    27.McCarthy, J. M., Geometric Design of Linkages, Interdisciplinary Applied Mathematics, Springer-Verlag, New York, 2000.
    28.Merlet, J-P., “Singular Configurations of Parallel Manipulators and Grassmann Geometry,” The International Journal of Robotics Research, Vol. 8, No. 5, pp. 45-56, 1989.
    29.Parkin, I. A., “A Third Conformation with the Screw Systems: Finite Twist Displacements of a Directed Line and Point,” Mechanism and Machine Theory, Vol. 27, pp. 177-188, 1992.
    30.Plücker, J., “On a New Geometry of Space,” Phil. Trans., Vol. Clv., pp. 725-791, 1865.
    31.Plücker, J., Neue Geometrice des Raumes, gegründet auf die Betrachtung der geraden Linie als Raumelement, 1, Teubner, Leipzig, Germany, 1868.
    32.Phillips, J., Freedom in Machinery, Volumes 1, Cambridge University Press, Cambridge, 1984.
    33.Phillips, J., Freedom in Machinery, Volumes 2, Cambridge University Press, Cambridge, 1990.
    34.Pottmann, H., Peternell, M., and Ravani, B., “Approximation in Line Space - Applications in Robot Kinematics and Surface Reconstruction,” Advances in Robot Kinematics: Analysis and Control, pp. 403-412, 1998.
    35.Pottmann, H., Peternell, M., and Ravani, B., “An Introduction to Line Geometry with Applications,” Computer-Aided Design, Vol. 31, pp. 3-16, 1999.
    36.Pottmann, H., and Wallner, J., Computational Line Geometry, Springer-Verlag, Berlin, 2001.
    37.Rodrigues, O., “Des lois géométriques qui régissent les déplacements d’un systéme solide dans l’espace, et de la variation des coordonnées provenant de ces déplacements considérés indépendamment des causes qui peuvent les produire,” Journal De Mathématiques Pures et Appliquées, 5, 1st Series, pp. 380-440, 1840.
    38.Roth, B., “On the Screw Axes and other Special Lines Associated with Spatial Displacements or a Rigid Body,” Journal of Engineering for Industry, Trans. of the ASME, Ser. B, pp102-110, 1967.
    39.Strang, G., Linear Algebra and its Applications, Harcourt Brace Jovanovich, 1988.
    40.Study, E, “Von den Bewegungen und Umlegungen,” Mathematische Annalen, 39, pp. 441-564, 1891.
    41.Tsai, L. W., and Roth, B., “Incompletely Specified Displacements: Geometry and Spatial Linkage Synthesis,” Journal of Engineering for Industry, Trans. of the ASME, Vol. 95(B), pp. 603-611, 1973.
    42.Tsai, L. W., Robot Analysis, John Wiley and Sons, 1999.
    43.Veblen, O., and Young, J. W., Projective Geometry, Vol. 1, Blaisdell Publishing Company, 1938.
    44.Wolf, A., and Shoham, M., “Investigation of Parallel Manipulators Using Linear Complex Approximation,” Journal of Mechanical Design, Trans. ASME, Vol. 125, pp. 564-572, 2003.
    45.Wolf, A., Ottaviano, E., Shoham, M., and Ceccalelli, M., “Application of line geometry and linear complex approximation to singularity analysis of the 3-DOF CaPaMan parallel manipulator,” Mechanism and Machine Theory, Vol. 39, pp. 75-95, 2004.
    46.王錦成,有限位移螺旋之定義與直線位移之螺旋系統,國立成功大學機械工程研究所碩士論文,1990。
    47.郭武彰,黃金沺,應用線幾何方法求解線量測之剛體位移,第十一屆全國機構與機器設計學術研討會會議論文,2008。
    48.郭武彰,黃金沺,點位移與線位移有限螺旋螺距之線幾何基礎,第十屆全國機構與機器設計學術研討會會議論文,2007。
    49.翁振瀛,以線性代數法求解過指定位移之研究,國立成功大學機械工程研究所碩士論文,2003。

    下載圖示 校內:2012-04-21公開
    校外:2012-04-21公開
    QR CODE