簡易檢索 / 詳目顯示

研究生: 鄭翰欽
Cheng, Han-Chin
論文名稱: 利用次世代轉錄體定序研究不同逆境下綠藻(Neodesmus sp. UTEX2219-4)之脂肪酸累積原因
Investigation of fatty acid accumulation under various stresses in green algae (Neodesmus sp. UTEX2219-4) by next-generation transcriptome sequencing
指導教授: 張文綺
Chang, Wen-Chi
共同指導教授: 劉宗霖
Liu, Tsung-Lin
學位類別: 碩士
Master
系所名稱: 生物科學與科技學院 - 生物資訊與訊息傳遞研究所
Insitute of Bioinformatics and Biosignal Transduction
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 55
中文關鍵詞: 綠藻生質能源脂肪次世代定序資料庫生物代謝路徑
外文關鍵詞: green algae, biofuel, lipid, Next-generation sequence (NGS), database, biological pathway
相關次數: 點閱:93下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 藻類會在光、滲透壓、缺氮等環境下,大量累積脂肪酸。因此藻類是一個適當的生物質來源。然而為何藻類會在有外界壓力的情況下,會累積脂肪酸的機制仍然不清楚。因此在本實驗,Neodesmus sp. UTEX 2219-4被培養在正常環境、缺氮、sorbitol stress以及高鹽分中6個小時後。四個樣本的mRNA,被分離出來做454 焦磷酸定序。進而去分析有哪些基因或機制促使油脂產生。由結果可以發現,在六小時內,於sorbitol stress以及高鹽分的環境下,脂肪酸合成的基因、其表現量絕大多數都是上升的。此外超氧化物歧化酶(Superoxide dismutase)以及過氧化物酶(Peroxidase)的基因表現量也有上升。這表示說,外在的壓力會誘發細胞內部的氧化壓力。隨之,大量自由基也會產生。為了修補被自由基所破壞的膜,因此大量的脂肪酸被合成而修補之。另外,在光系統中心一、二以及葉綠素的合成等相關基因中,有許多基因的表現量都是下降的。其原因在於OsMyb4-like gene這個轉錄因子(transcription factor)會被外在壓力所抑制,進而導致光合作用等相關的基因表現量降低。
    另外,藻類是重要的非模式植物(Non-model plants),且有許多應用,如:物種多樣性、生質燃料的來源、吸附重金屬或是拿來加工作為保健食品等。隨著次世代定序技術的發展,大量的轉錄組(Transcriptome)以及基因組(Genome)實驗資料因而產生。也因而,為了瞭解藻類的功能以及細胞反應等,整合這些數據、並提供以基因或是代謝途徑等方式來進行檢索的平台是件必要的工作。然而,在現今的資料庫,其基因表現量與生物代謝途徑是分開來呈現的。這使的使用者無法直接去直觀的了解生物其反應機制。因此AlgaePath也因而被建立,且讓使用者能夠有效率地去了解這個物種在多種環境之下,其多樣的生物代謝路徑。這個資料庫網址如下:http://AlgaePath.itps.ncku.edu.tw.

    Fatty acid is largely accumulated in the algae under stress conditions such as light, osmotic stress, and nitrogen starvation etc. Hence algae can be a good source for biomass. However, the mechanisms of oil accumulation under stresses in the algae are still unclear. Therefore, 454 pyrosequencing transcriptome data of Neodesmus sp. UTEX 2219-4 were obtained under normal, nitrogen starvation, sorbitol stress and salt stress to identify critical genes involved in oil production in this study. Under sorbitol stress and salt stress, most genes were up-regulated in 6 hours in fatty acid biosynthesis, as well as, superoxide dismutase and peroxidase. It suggests that the oxidative stress was induced by environment stress and more fatty acids are required to repair destroying membrane. However, most genes of photosystem I, II, chlorophyll synthesis and light harvest complex were down-regulated. A transcription factor, OsMyb4-like gene was investigated to regulate the mechanisms in the system.
    Additionally, algae are the most important non-model plants and have many research applications, including high species diversity, sources of biofuel, adsorption of heavy metals and, following processing, health supplements. As increasing amounts of next-generation sequencing data for algae genomes and transcriptomes become available, an integrated resource for retrieving gene expression data and metabolic pathway is becoming essential for functional analysis of algae. However, gene expression profiles and biological pathways are displayed separately in current resources, and current databases cannot be searched directly to identify the cellular response mechanisms. Therefore, this work also develops AlgaePath to retrieve efficiently gene expression profiles under various conditions in numerous metabolic pathways. The database is freely available at http://AlgaePath.itps.ncku.edu.tw.

    中文摘要 Ⅰ Abstract Ⅱ 誌謝 Ⅲ INDEX OF CONTENTS Ⅳ LIST OF TABLES Ⅵ LIST OF FIGURES Ⅶ 1. Introduction 1 1.1. Algae and biofuel 1 1.2. Stress-induced oil accumulation in algae 1 1.3. Except biofuel, algae play multiple important roles in the world 2 1.4. Related works of algae expression profile database 2 1.5. Purpose 2 2. Method 4 2.1. 454 sequencing data 4 2.2. Pool and assembling 4 2.3. Sequence annotation and expression level calculation 4 2.4. Cross-species functional similarity analysis (Top-hit) 4 2.5. Gene ontology (GO) analysis 5 2.6. KEGG pathway analysis 5 2.7. Identification of transcription factors 5 2.8. AlgaePath construction 6 2.8.1.Integration of external database 6 3. Results and Discussion 8 3.1. Sequencing assembling and annotation 8 3.2.Cross-species functional similarity analysis (Top-hit) 8 3.3. Gene ontology analysis 8 3.4. Gene ontology enrichment analysis 9 3.5. Transcripts involved in fatty acid biosynthesis are up-regulated under sorbitol and salt stresses 10 3.6. Cellular response in photosynthesis associated pathway 10 3.6.1. Lightharvesting ability was decreased under various stresses 10 3.6.2. Efficiency of photosystem Ⅱ and Ⅰwere decreased under sorbitol stress and salt stress 11 3.6.3. Oxidative stress is produced in cell 11 3.7. Energy flow 12 3.8. Transcription factor detection 13 3.9. Summary and discussion 13 3.10. AlgaePath utility and discussion 13 3.10.1. Web interface 13 3.10.1.1. Gene search 14 3.10.1.2. Pathway search 14 3.10.1.3. Fold search 14 3.10.1.4. Gene group analysis 14 3.10.1.5. Gene information 15 3.10.1.6. KEGG orthology information 15 3.10.2 Case study 15 3.10.3 AlgaePath discussion and evaluation 15 3.10.4 Future perspectives 16 4. Conclusion and Prospect 17 5. Reference 18

    Becana, M, Moran, JF, & Iturbe-Ormaetxe, I. (1998). Iron-dependent oxygen free radical generation in plants subjected to environmental stress: toxicity and antioxidant protection. Plant and Soil, 201(1), 137-147.
    Bielewicz, D., Dolata, J., Zielezinski, A., Alaba, S., Szarzynska, B., Szczesniak, M. W., . . . Karlowski, W. M. (2012). mirEX: a platform for comparative exploration of plant pri-miRNA expression data. Nucleic Acids Res, 40(Database issue), D191-197. doi: 10.1093/nar/gkr878
    Biswal, B., Joshi, P. N., Raval, M. K., & Biswal, U. C. (2011). Photosynthesis, a global sensor of environmental stress in green plants: stress signalling and adaptation. Current Science, 101(1), 47-56.
    Blokhina, Olga, Virolainen, Eija, & Fagerstedt, Kurt V. (2003). Antioxidants, oxidative damage and oxygen deprivation stress: a review. Annals of botany, 91(2), 179-194.
    Bricker, T. M., & Frankel, L. K. (2011). Auxiliary functions of the PsbO, PsbP and PsbQ proteins of higher plant Photosystem II: a critical analysis. J Photochem Photobiol B, 104(1-2), 165-178. doi: 10.1016/j.jphotobiol.2011.01.025
    Çetinkaya Dönmez, G, Aksu, Z, Öztürk, A, & Kutsal, T. (1999). A comparative study on heavy metal biosorption characteristics of some algae. Process Biochemistry, 34(9), 885-892.
    Coker, J. S., & Davies, E. (2003). Selection of candidate housekeeping controls in tomato plants using EST data. Biotechniques, 35(4), 740-+.
    Collén, J., Pinto, E., Pedersén, M., & Colepicolo, P. (2003). Induction of Oxidative Stress in the Red Macroalga Gracilaria tenuistipitata by Pollutant Metals. Archives of Environmental Contamination and Toxicology, 45(3). doi: 10.1007/s00244-003-0196-0
    Cordoba, E. M., Die, J. V., Gonzalez-Verdejo, C. I., Nadal, S., & Roman, B. (2011). Selection of reference genes in Hedysarum coronarium under various stresses and stages of development. Anal Biochem, 409(2), 236-243. doi: 10.1016/j.ab.2010.10.031
    Elbaz, A., Wei, Y. Y., Meng, Q., Zheng, Q., & Yang, Z. M. (2010). Mercury-induced oxidative stress and impact on antioxidant enzymes in Chlamydomonas reinhardtii. Ecotoxicology, 19(7), 1285-1293. doi: 10.1007/s10646-010-0514-z
    Fan, J., Yan, C., Andre, C., Shanklin, J., Schwender, J., & Xu, C. (2012). Oil accumulation is controlled by carbon precursor supply for fatty acid synthesis in Chlamydomonas reinhardtii. Plant Cell Physiol, 53(8), 1380-1390. doi: 10.1093/pcp/pcs082
    Gao, Q. T., & Tam, N. F. (2011). Growth, photosynthesis and antioxidant responses of two microalgal species, Chlorella vulgaris and Selenastrum capricornutum, to nonylphenol stress. Chemosphere, 82(3), 346-354. doi: 10.1016/j.chemosphere.2010.10.010
    Gechev, T. S., Van Breusegem, F., Stone, J. M., Denev, I., & Laloi, C. (2006). Reactive oxygen species as signals that modulate plant stress responses and programmed cell death. Bioessays, 28(11), 1091-1101. doi: Doi 10.1002/Bies.20493
    Gonzalez-Ballester, D., Casero, D., Cokus, S., Pellegrini, M., Merchant, S. S., & Grossman, A. R. (2010). RNA-seq analysis of sulfur-deprived Chlamydomonas cells reveals aspects of acclimation critical for cell survival. Plant Cell, 22(6), 2058-2084. doi: 10.1105/tpc.109.071167
    Goodstein, D. M., Shu, S., Howson, R., Neupane, R., Hayes, R. D., Fazo, J., . . . Rokhsar, D. S. (2012). Phytozome: a comparative platform for green plant genomics. Nucleic Acids Res, 40(Database issue), D1178-1186. doi: 10.1093/nar/gkr944
    Grigoriev, I. V., Nordberg, H., Shabalov, I., Aerts, A., Cantor, M., Goodstein, D., . . . Dubchak, I. (2012). The genome portal of the Department of Energy Joint Genome Institute. Nucleic Acids Res, 40(Database issue), D26-32. doi: 10.1093/nar/gkr947
    Guo, Ruoyu, & Ki, Jang-Seu. (2012). Evaluation and validation of internal control genes for studying gene expression in the dinoflagellate< i> Prorocentrum minimum</i> using real-time PCR. European journal of protistology, 48(3), 199-206.
    Gupta, Rajeev, He, Zengyong, & Luan, Sheng. (2002). Functional relationship of cytochrome c6 and plastocyanin in Arabidopsis. Nature, 417(6888), 567-571.
    Gupta, VK, Shrivastava, AK, & Jain, Neeraj. (2001). Biosorption of Chromium (VI) From Aqueous solutions by green algae< i> spirogyra</i> species. Water Research, 35(17), 4079-4085.
    Ifuku, K., Yamamoto, Y., Ono, T. A., Ishihara, S., & Sato, F. (2005). PsbP protein, but not PsbQ protein, is essential for the regulation and stabilization of photosystem II in higher plants. Plant Physiol, 139(3), 1175-1184. doi: 10.1104/pp.105.068643
    Junker, B. H., Klukas, C., & Schreiber, F. (2006). VANTED: a system for advanced data analysis and visualization in the context of biological networks. BMC Bioinformatics, 7, 109. doi: 10.1186/1471-2105-7-109
    Kanehisa, Minoru, & Goto, Susumu. (2000). KEGG: kyoto encyclopedia of genes and genomes. Nucleic acids research, 28(1), 27-30.
    Katz, M. E., Wright, J. D., Miller, K. G., Cramer, B. S., Fennel, K., & Falkowski, P. G. (2005). Biological overprint of the geological carbon cycle. Marine Geology, 217(3-4), 323-338. doi: DOI 10.1016/j.margeo.2004.08.005
    Kent, W. J. (2002). BLAT---The BLAST-Like Alignment Tool. Genome Research, 12(4), 656-664. doi: 10.1101/gr.229202
    Lommer, M., Specht, M., Roy, A. S., Kraemer, L., Andreson, R., Gutowska, M. A., . . . Laroche, J. (2012). Genome and low-iron response of an oceanic diatom adapted to chronic iron limitation. Genome Biol, 13(7), R66. doi: 10.1186/gb-2012-13-7-r66
    Longhurst, Alan R. (1991). Role of the marine biosphere in the global carbon cycle. Limnology and Oceanography, 36(8), 1507-1526.
    Lopez, D., Casero, D., Cokus, S. J., Merchant, S. S., & Pellegrini, M. (2011). Algal Functional Annotation Tool: a web-based analysis suite to functionally interpret large gene lists using integrated annotation and expression data. BMC Bioinformatics, 12, 282. doi: 10.1186/1471-2105-12-282
    Martin, Marshall A. (2010). First generation biofuels compete. New biotechnology, 27(5), 596-608.
    McCarthy, F. M., Gresham, C. R., Buza, T. J., Chouvarine, P., Pillai, L. R., Kumar, R., . . . Burgess, S. C. (2011). AgBase: supporting functional modeling in agricultural organisms. Nucleic Acids Res, 39(Database issue), D497-506. doi: 10.1093/nar/gkq1115
    McCarthy, F. M., Wang, N., Magee, G. B., Nanduri, B., Lawrence, M. L., Camon, E. B., . . . Burgess, S. C. (2006). AgBase: a functional genomics resource for agriculture. BMC Genomics, 7, 229. doi: 10.1186/1471-2164-7-229
    McKendry, P. (2002). Energy production from biomass (Part 1): Overview of biomass. Bioresour Technol, 83(1), 37-46.
    McKendry, Peter. (2002). Energy production from biomass (part 2): conversion technologies. Bioresource technology, 83(1), 47-54.
    Merchant, S. S., Prochnik, S. E., Vallon, O., Harris, E. H., Karpowicz, S. J., Witman, G. B., . . . Grossman, A. R. (2007). The Chlamydomonas genome reveals the evolution of key animal and plant functions. Science, 318(5848), 245-250. doi: 10.1126/science.1143609
    Mi, H., Muruganujan, A., & Thomas, P. D. (2013). PANTHER in 2013: modeling the evolution of gene function, and other gene attributes, in the context of phylogenetic trees. Nucleic Acids Res, 41(Database issue), D377-386. doi: 10.1093/nar/gks1118
    Miller, R., Wu, G., Deshpande, R. R., Vieler, A., Gartner, K., Li, X., . . . Benning, C. (2010). Changes in transcript abundance in Chlamydomonas reinhardtii following nitrogen deprivation predict diversion of metabolism. Plant Physiol, 154(4), 1737-1752. doi: 10.1104/pp.110.165159
    Peers, Graham, & Price, Neil M. (2006). Copper-containing plastocyanin used for electron transport by an oceanic diatom. Nature, 441(7091), 341-344.
    Peled, E., Leu, S., Zarka, A., Weiss, M., Pick, U., Khozin-Goldberg, I., & Boussiba, S. (2011). Isolation of a novel oil globule protein from the green alga Haematococcus pluvialis (Chlorophyceae). Lipids, 46(9), 851-861. doi: 10.1007/s11745-011-3579-4
    PETERSON, TODD A, LOVATT, CAROL J, & NIEMAN, RICHARD H. (1988). Salt stress causes acceleration of purine catabolism and inhibition of pyrimidine salvage in Zea mays root tips. Journal of experimental botany, 39(10), 1389-1395.
    Prochnik, S. E., Umen, J., Nedelcu, A. M., Hallmann, A., Miller, S. M., Nishii, I., . . . Rokhsar, D. S. (2010). Genomic analysis of organismal complexity in the multicellular green alga Volvox carteri. Science, 329(5988), 223-226. doi: 10.1126/science.1188800
    Punta, M., Coggill, P. C., Eberhardt, R. Y., Mistry, J., Tate, J., Boursnell, C., . . . Finn, R. D. (2012). The Pfam protein families database. Nucleic Acids Res, 40(Database issue), D290-301. doi: 10.1093/nar/gkr1065
    Reimand, J., Arak, T., & Vilo, J. (2011). g:Profiler--a web server for functional interpretation of gene lists (2011 update). Nucleic Acids Res, 39(Web Server issue), W307-315. doi: 10.1093/nar/gkr378
    Reimand, J., Kull, M., Peterson, H., Hansen, J., & Vilo, J. (2007). g:Profiler--a web-based toolset for functional profiling of gene lists from large-scale experiments. Nucleic Acids Res, 35(Web Server issue), W193-200. doi: 10.1093/nar/gkm226
    Rismani-Yazdi, H., Haznedaroglu, B. Z., Bibby, K., & Peccia, J. (2011). Transcriptome sequencing and annotation of the microalgae Dunaliella tertiolecta: pathway description and gene discovery for production of next-generation biofuels. BMC Genomics, 12(1), 148. doi: 10.1186/1471-2164-12-148
    Roose, J. L., Wegener, K. M., & Pakrasi, H. B. (2007). The extrinsic proteins of Photosystem II. Photosynth Res, 92(3), 369-387. doi: 10.1007/s11120-006-9117-1
    Rosenberg, Julian N., Oyler, George A., Wilkinson, Loy, & Betenbaugh, Michael J. (2008). A green light for engineered algae: redirecting metabolism to fuel a biotechnology revolution. Current Opinion in Biotechnology, 19(5), 430-436. doi: 10.1016/j.copbio.2008.07.008
    Roy, D., Greenlaw, P. N., & Shane, B. S. (1993). Adsorption of Heavy-Metals by Green-Algae and Ground Rice Hulls. Journal of Environmental Science and Health Part a-Environmental Science and Engineering & Toxic and Hazardous Substance Control, A28(1), 37-50.
    Saha, S. K., McHugh, E., Hayes, J., Moane, S., Walsh, D., & Murray, P. (2013). Effect of various stress-regulatory factors on biomass and lipid production in microalga Haematococcus pluvialis. Bioresour Technol, 128, 118-124. doi: 10.1016/j.biortech.2012.10.049
    Saibo, N. J., Lourenco, T., & Oliveira, M. M. (2009). Transcription factors and regulation of photosynthetic and related metabolism under environmental stresses. Ann Bot, 103(4), 609-623. doi: 10.1093/aob/mcn227
    Schweikert, Katja, & Burritt, David J. (2012). The organophosphate insecticide Coumaphos induces oxidative stress and increases antioxidant and detoxification defences in the green macroalgae Ulva pertusa. Aquatic Toxicology, 122-123, 86-92. doi: 10.1016/j.aquatox.2012.05.003
    Sekiya, Mika, Hiraishi, Ako, Touyama, Maiko, & Sakamoto, Kazuichi. (2008). Oxidative stress induced lipid accumulation via SREBP1c activation in HepG2 cells. Biochemical and biophysical research communications, 375(4), 602-607.
    Sharma, Pallavi, Jha, Ambuj Bhushan, Dubey, Rama Shanker, & Pessarakli, Mohammad. (2012). Reactive Oxygen Species, Oxidative Damage, and Antioxidative Defense Mechanism in Plants under Stressful Conditions. Journal of Botany, 2012, 1-26. doi: 10.1155/2012/217037
    Singh, Jasvinder, & Gu, Sai. (2010). Commercialization potential of microalgae for biofuels production. Renewable and Sustainable Energy Reviews, 14(9), 2596-2610.
    Singh, S. C., Sinha, R. P., & Hader, D. P. (2002). Role of lipids and fatty acids in stress tolerance in cyanobacteria. Acta Protozoologica, 41(4), 297-308.
    Solovchenko, A., Khozin-Goldberg, I., Recht, L., & Boussiba, S. (2011). Stress-induced changes in optical properties, pigment and fatty acid content of Nannochloropsis sp.: implications for non-destructive assay of total fatty acids. Mar Biotechnol (NY), 13(3), 527-535. doi: 10.1007/s10126-010-9323-x
    Takagi, Mutsumi, Karseno, & Yoshida, Toshiomi. (2006). Effect of salt concentration on intracellular accumulation of lipids and triacylglyceride in marine microalgae Dunaliella cells. Journal of Bioscience and Bioengineering, 101(3), 223-226. doi: 10.1263/jbb.101.223
    Tatusov, Roman L, Fedorova, Natalie D, Jackson, John D, Jacobs, Aviva R, Kiryutin, Boris, Koonin, Eugene V, . . . Nikolskaya, Anastasia N. (2003). The COG database: an updated version includes eukaryotes. BMC bioinformatics, 4(1), 41.
    Thimm, O., Blasing, O., Gibon, Y., Nagel, A., Meyer, S., Kruger, P., . . . Stitt, M. (2004). MAPMAN: a user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes. Plant J, 37(6), 914-939.
    Vijayan, Perumal. (2002). Photoinhibition in mutants of Arabidopsis deficient in thylakoid unsaturation. Plant physiology, 129(2), 876-885.
    Wang, S. T., Pan, Y. Y., Liu, C. C., Chuang, L. T., & Chen, C. N. N. (2011). Characterization of a green microalga UTEX 2219-4: Effects of photosynthesis and osmotic stress on oil body formation. Botanical Studies, 52(3), 305-312.
    Wang, Z. T., Ullrich, N., Joo, S., Waffenschmidt, S., & Goodenough, U. (2009). Algal lipid bodies: stress induction, purification, and biochemical characterization in wild-type and starchless Chlamydomonas reinhardtii. Eukaryot Cell, 8(12), 1856-1868. doi: 10.1128/EC.00272-09
    Wein, S. P., Cote, R. G., Dumousseau, M., Reisinger, F., Hermjakob, H., & Vizcaino, J. A. (2012). Improvements in the Protein Identifier Cross-Reference service. Nucleic Acids Res, 40(Web Server issue), W276-280. doi: 10.1093/nar/gks338
    Zhang, H., Jin, J., Tang, L., Zhao, Y., Gu, X., Gao, G., & Luo, J. (2011). PlantTFDB 2.0: update and improvement of the comprehensive plant transcription factor database. Nucleic Acids Res, 39(Database issue), D1114-1117. doi: 10.1093/nar/gkq1141
    Zhang, Z., Shrager, J., Jain, M., Chang, C. W., Vallon, O., & Grossman, A. R. (2004). Insights into the survival of Chlamydomonas reinhardtii during sulfur starvation based on microarray analysis of gene expression. Eukaryot Cell, 3(5), 1331-1348. doi: 10.1128/EC.3.5.1331-1348.2004
    Zhekisheva, M., Boussiba, S., Khozin-Goldberg, I., Zarka, A., & Cohen, Z. (2002). Accumulation of oleic acid in Haematococcus pluvialis (Chlorophyceae) under nitrogen starvation or high light is correlated with that of astaxanthin esters. Journal of Phycology, 38(2), 325-331. doi: DOI 10.1046/j.1529-8817.2002.01107.x

    下載圖示 校內:2015-08-28公開
    校外:2015-08-28公開
    QR CODE