| 研究生: |
周依芳 Chou, Yi-Fang |
|---|---|
| 論文名稱: |
液晶聚合物薄膜三維光子晶體製作及其光學性質研究 Fabrication and studies of three-dimensional photonic crystals based on polymer-dispersed liquid crystal films |
| 指導教授: |
傅永貴
Fuh, Ying-Guey Andy |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程研究所 Institute of Electro-Optical Science and Engineering |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 102 |
| 中文關鍵詞: | 光子晶體 、液晶聚合物薄膜 |
| 外文關鍵詞: | polymer dispersed liquid crystal (PDLC) films, photonic crystal |
| 相關次數: | 點閱:70 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文採用雙光束干涉且多次曝光技術研製全像三維光子晶體以及準光子晶體。實驗上由兩道夾角為38.90的同調雷射光干涉,將干涉光在空間中的強弱分佈紀錄於全像液晶聚合物薄膜(holographic polymer dispersed liquid crystal, HPDLC)。製作結構時,將一道雷射光正向入射於PDLC薄膜上,另一道光以38.90入射,兩道光在樣品上重疊並進行三次及五次曝光,每次曝光之後,將樣品以法線方向為轉軸分別旋轉120°及72°,形成面心立方結構以及具有十重旋轉對稱的準光子晶體結構。此種多次曝光的干涉方式,與一般使用全像干涉技術的光子晶體研製方法相比,實驗設置較為簡易,且可製造大面積(1X1 cm2) 光子晶體結構。在結構完成後,使用掃描式電子顯微鏡(SEM)拍攝HPDLC薄膜結構,與理論模擬結果相似,晶格間距的誤差約為3~15 %。此外,將結構的繞射及色散等光學性質研究結果,與使用傅立葉轉換計算模擬所得相互比較,非常吻合。且外加電壓於HPDLC薄膜光子晶體,量測光入射時的繞射效率,證實此光子晶體結構內部折射率差為可調變。實驗結果也可確認此三維HPDLC薄膜光子晶體具有超稜鏡現象。
This thesis studies three-dimensional (3D) photonic crystal (PC) and quasi photonic crystal (QPC) based on polymer dispersed liquid crystal (PDLC) films using two-beam interference with multi-exposures. Such a method simplifies the experimental setup in comparison with conventional holographic approach, and allows us to fabricate a large area (1x1 cm2) PC. Experimentally, one beam is incident normally onto the PDLC film, and the other beam is incident at an angle of 38.9°. Two beams are overlapped at the sample. Three and five exposures are made to fabricate the PDLC PCs, and between each exposure, the sample is rotated 120° and 72°, respectively along the normal of the sample surface. The photonic crystals obtained possess face-cubic center, and ten-fold rotation symmetry structures for the samples with three and five exposures, respectively. The structures of the fabricated PCs probed using scanning electron microscope (SEM) are found to agree with theory qualitatively. Deviation of the lattice spacing is 3~15 %. Furthermore, diffraction and dispersion effects of these PCs are systematically studied. The diffraction patterns agree well with theory based on Fourier transformation approach. It is also demonstrated that the diffraction efficiency of the 3D PCs can be electrically controllable. And the PCs possess the superprism effect.
參考文獻
[1]松本正一 角田市良 合著,劉瑞祥 譯, “液晶之基礎與應用,”
國立編譯館出版 (1996).
[2]液晶應用技術研究會 著, “最新液晶應用技術”, 建興出版社
(1997).
[3]顧鴻壽 編著, “光電液晶平面顯示器-第二版”, 新文京開發
出版社(2004).
[4]小林駿介 著, “e世代液晶顯示器”, 全華圖書 (2002).
[5]趙中興 著, “顯示器原理與技術”, 全華圖書 (2001).
[6]Pochi Yeh et al, “Optical of Liquid Crystal Display”,
John Wiley & Sons Inc. (2006).
[7]李冠卿 著, “近代光學”, 聯經出版事業公司(1988).
[8]苗村省平 著,陳建銘 譯, “液晶顯示器技術入門” ,全華圖書
(2005).
[9]J. G., and H. C.,”Polymer stabilized liquid crystal
films reflecting both right- and left-circularly
polarized light”, Appl. Phys, Lett. 93, 201901(2008).
[10]S. R., and C. B.,” Broadband reflective liquid
crystalline gels due to the ultraviolet light
screening made by the liquid crystal”, Appl. Phys,
Lett. 89, 251907(2006).
[11]Z. B., and K. L., ” Characteristics of selective
reflection of chiral nematic liquid crystalline gels
with a nonuniform pitch distribution”, Appl. Phys,
Lett. 91, 201908(2007).
[12]J. W. M., and G. D. J., ”Anemia detection utilizing
diffuse reflectance spectra from the palpebral
conjunctiva and tunable liquid crystal filter
technology”, SPIE, 6177, 6177C(2006).
[13]王珍珍, “混合聚亞醯胺配向膜調控液晶預傾角之研究及應
用” 國立成功大學, 光電科學與工程研究所 (2008).
[14]黃啟炎, "液晶-聚合物混合薄膜之光學二倍頻現象之研究", 國
立成功大學, 物理研究所 (2005).
[15]李明賢, “液晶聚合物薄膜光子晶體超菱鏡現象之研究”, 國
立成功大學, 物理研究所 (2005).
[16]葛士瑋, “利用應力調至聚合物混合液晶薄膜製作可調式分光
元件”, 國立成功大學, 光電科學與工程研究所 (2007).
[17]V. G. Chigrinov, “Liquid crystal devices-Physics and
Applications”, Artech House, 1st ed (1999)
[18]Michael J. Escuti and Gregory P. Crawford, Mol.
Cryst. Liq. Cryst., Vol. 421, pp. 23–36(2004)
[19]S. T. Wu and Andy Y. G. Fuh, “Lasing in photonic
crystals based on dye-doped Holographic polymer-
dispersed liquid crystal reflection gratings”, Jpn.
J. Appl. Phys. 44, 977 (2005)
[20]Y. Lin, P. R. Herman and E. L. Abolghasemi, “Proposed
single-exposure holographic fabrication of microsphere-
type photonic crystals through phase-mask
techniques”, J. Appl. Phys. 97, 096102 (2005)
[21]Y. J. LIU and X. W. SUN,” Electrically Tunable Three-
Dimensional Holographic Photonic Crystal Made of
Polymer-Dispersed Liquid Crystals Using a Single
Prism”, Jpn. J. Appl. Phys., 46, 6634(2007)
[22]E. Yablonovitch,” Inhibited Spontaneous Emission in
Solid-State Physics and Electronics”, Phys. Rev.
Lett. 58, 2059 (1987).
[23]S. John,” Strong localization of photons in certain
disordered dielectric superlattices”, Phys. Rev.
Lett. 58, 2486 (1987).
[24]欒丕綱、陳啟昌,“光子晶體 從蝴蝶翅膀到奈米光子學”,五
南出版社 (2005).
[25]M. J. Madou, “Fundamentales of Microfabrication”,
CRC Press, Boca Raton, 2002.
[26]羅吉宏, “薄膜科技與應用”, 全華科技圖書 (2004)
[27]H. B. Sun, S. Matsuo and Hiroaki Misawa, “Three-
dimensional photonic crystal structures achieved with
two-photon-absorption photopolymerization of resin”,
Appl. Phys. Lett. 74, 786 (1999)
[28]P. N. Prasad, “Nanophotonics”, John Wiley & Sons
(2004)
[29]M. Kim, D. Kim, S. Lee and O’Dae Kwon, “Wet etching
fabrication of photonic quantum ring laser”, J. Appl.
Phys. 96, 4742 (2004)
[30]F. Pommereau, L. Legouezigou, S. Hubert, S. Sainson,
J. P. Chandouineau, S. Fabre, B. Lombardet, R. Ferrini
and R. Houdre, “Fabrication of low loss two-
dimensional InP photonic crystals by inductively
coupled plasma etching”, J. Appl. Phys. 95, 2242
(2004)
[31]T. Kawashima, K. Miura, T. Sato and S. Kawakami,
“Self-healing effects in the fabrication process of
photonic crystals”, Appl. Phys. Lett. 77, 2613 (2000)
[32]J. Deng , X. Tao, “A simple self-assembly method for
colloidal photonic crystalswith a large area”,Journal
of Colloid and Interface Science 286, 573–57(2005)
[33]S. L. Kuai, G. Bader and P. V. Ashrita, “Tunable
electrochromic photonic crystals”, Appl. Phys. Lett.
86, 221110 (2005)
[34]S. Noda, N. Yamamoto, M. Imada, H. Kobayashi, and M.
Okano, “Alignment and stacking of semiconductor
photonic bandgaps by wafer-fusion”, J. Lightwave
Technol. 17, 1948 (1999)
[35]M. Maldovan, E. L. Thomas and C. W. Carter, “Layer-by-
layer diamond-like woodpile structure with a large
photonic band gap”, Appl. Phys. Lett. 84, 362 (2004)
[36]Max-Planck-Institute of Microstructure Physics,”
Tetragonal photonic woodpile structures “Appl. Phys.
B 76, 729–734 (2003)
[37]M.Straub, M. Gu,” Near-infrared photonic crystals
with higher-order bandgaps generated by two-photon
photopolymerization”, Opt. Let., 27, 1824(2002)
[38]James J. Raftery, Jr., Aaron J. Danner, Jason C. Lee,
and Kent D. Choquettea, “Coherent coupling of two-
dimensional arrays of defect cavities in photonic
crystal vertical cavity surface-emitting lasers”,
Appl. Phys. Lett. 86, 201104 (2005)
[39]A. E. Vasdekis, G. A. Turnbull, I. D. W. Samuela, P.
Andrew and W. L. Barnes, “Low threshold edge emitting
polymer distributed feedback laser based on a square
lattice”, Appl. Phys. Lett. 86, 161102 (2005)
[40]Lu Chena and A. V. Nurmikko, “Fabrication and
performance of efficient blue light emitting III-
nitride photonic crystals”, Appl. Phys. Lett. 85,
3663 (2004)
[41]S. Kim, Gregory P. Nordin,” Ultracompact high-
efficiency polarizing beam splitter with a hybrid
photonic crystal and conventional waveguide
structure”, OPT. LET. 28, 2384(2003)
[42]H. Kosaka, et. al., Phys. Rev. B, vol. 58, 10096
(1998).
[43]H. Kosaka, et al. J. Lightwave Technol. Vol. 17, 2032
(1999).
[44]A. Mekis, J. C. Chen, “High Transmission through
Sharp Bends in Photonic CrystalWaveguides”, Phy. Rev.
Lett., 77, 3787(1996)
[45]J. C. Kinght, “Photonic crystal fibres”, Nature 424,
847 (2003)
[46]M. Senechal, “What is a quasi-crystals?”, American
Mathematical Society, 53, 886(2006)
[47]Joseph W. Perry, “Update on 3D displays”,NATURE,
451, 636 (2008)
[48]L. Z. Cai, X. L. Yang, and Y. R. Wang, “All fourteen
Bravais lattices can be formed by interference of four
noncoplanar beams”, Opt. Lett. 27, 900 (2002)
[49]Kittel, “Introduction to Solid State Physics 8/e”,
John Wiley and Sons, Inc.
[50]鄭玄昌, "數位電視地面廣播系統DVB-T 之數位接收前端電路
設計", 國立中山大學, 電機工程學系碩士班 (2005).
[51]S. Noda and T. Baba, “Roadmap on photonic crystals”,
Kluwer Academic Publishers (2003)
[52]H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T.
Tamamura, T. Sato, and S. Kawakamib, “Superprism
phenomena in photonic crystals”, Phys. Rev. B 58,
R10096 (1998)
[53]S. Xiong, H. Fukshima, ”Analysis of light propagation
in index-tunable photonic crystals”, J. Appl. Phys.,
94, 1286(2003)
[54]H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T.
Tamamura, T. Sato, and S. Kawakamib, “Photonic
crystals for micro lightwave circuits using wavelength-
dependent angular beam steering”, Appl. Phys. Lett.
74, 1370 (1999)
[55]Y. Liu, S. Liu, and X. Zhang, “Fabrication of three-
dimensional photonic crystals with two-beam
holographic lithography”, Appl. Opt. 45, 480 (2006)
[56]Suraj P . Gorkhali, Jun Qi, and Gregory P . Crawford,
“Switchable quasi-crystal structures with five-,seven-
, and ninefold symmetries”, Journal of the Optical
Society of America B ,23, 149 (2006)
[57]http://newton.umsl.edu/run//nano/reltutor2.html