簡易檢索 / 詳目顯示

研究生: 周依芳
Chou, Yi-Fang
論文名稱: 液晶聚合物薄膜三維光子晶體製作及其光學性質研究
Fabrication and studies of three-dimensional photonic crystals based on polymer-dispersed liquid crystal films
指導教授: 傅永貴
Fuh, Ying-Guey Andy
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程研究所
Institute of Electro-Optical Science and Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 102
中文關鍵詞: 光子晶體液晶聚合物薄膜
外文關鍵詞: polymer dispersed liquid crystal (PDLC) films, photonic crystal
相關次數: 點閱:70下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文採用雙光束干涉且多次曝光技術研製全像三維光子晶體以及準光子晶體。實驗上由兩道夾角為38.90的同調雷射光干涉,將干涉光在空間中的強弱分佈紀錄於全像液晶聚合物薄膜(holographic polymer dispersed liquid crystal, HPDLC)。製作結構時,將一道雷射光正向入射於PDLC薄膜上,另一道光以38.90入射,兩道光在樣品上重疊並進行三次及五次曝光,每次曝光之後,將樣品以法線方向為轉軸分別旋轉120°及72°,形成面心立方結構以及具有十重旋轉對稱的準光子晶體結構。此種多次曝光的干涉方式,與一般使用全像干涉技術的光子晶體研製方法相比,實驗設置較為簡易,且可製造大面積(1X1 cm2) 光子晶體結構。在結構完成後,使用掃描式電子顯微鏡(SEM)拍攝HPDLC薄膜結構,與理論模擬結果相似,晶格間距的誤差約為3~15 %。此外,將結構的繞射及色散等光學性質研究結果,與使用傅立葉轉換計算模擬所得相互比較,非常吻合。且外加電壓於HPDLC薄膜光子晶體,量測光入射時的繞射效率,證實此光子晶體結構內部折射率差為可調變。實驗結果也可確認此三維HPDLC薄膜光子晶體具有超稜鏡現象。

    This thesis studies three-dimensional (3D) photonic crystal (PC) and quasi photonic crystal (QPC) based on polymer dispersed liquid crystal (PDLC) films using two-beam interference with multi-exposures. Such a method simplifies the experimental setup in comparison with conventional holographic approach, and allows us to fabricate a large area (1x1 cm2) PC. Experimentally, one beam is incident normally onto the PDLC film, and the other beam is incident at an angle of 38.9°. Two beams are overlapped at the sample. Three and five exposures are made to fabricate the PDLC PCs, and between each exposure, the sample is rotated 120° and 72°, respectively along the normal of the sample surface. The photonic crystals obtained possess face-cubic center, and ten-fold rotation symmetry structures for the samples with three and five exposures, respectively. The structures of the fabricated PCs probed using scanning electron microscope (SEM) are found to agree with theory qualitatively. Deviation of the lattice spacing is 3~15 %. Furthermore, diffraction and dispersion effects of these PCs are systematically studied. The diffraction patterns agree well with theory based on Fourier transformation approach. It is also demonstrated that the diffraction efficiency of the 3D PCs can be electrically controllable. And the PCs possess the superprism effect.

    目錄 中文摘要 I 英文摘要 III 誌謝 V 目錄 VI 圖表索引 IX 第1章 緒論 1 第2章 液晶簡介 2-1 何謂液晶? 3 2-2 液晶分類 4 2-3 液晶的光學特性 12 2-4 聚合物混合液晶薄膜 2-4-1 PDLC的製造 16 2-4-2 PDLC的光電特性 17 2-4-3 全像液晶聚合物薄膜(Holographic PDLC, H-PDLC) 21 第3章 光子晶體簡介 3-1 光子晶體介紹 23 3-2 光子晶體製程方式 25 3-2-1 一維光子晶體製程方法 26 3-2-2 二維光子晶體製程方法 27 3-2-3 三維光子晶體製程方法 30 3-3 光子晶體的應用 3-2-1 光子晶體發光元件 33 3-2-2 光子晶體光學元件 34 3-2-3 光子晶體通訊元件 37 3-4 準晶體 39 第4章 相關理論 4-1 全像術(Holography) 4-1-1 全像術簡介 41 4-1-2 全像干涉 44 4-1-3 干涉場在空間中的光強度分布 48 4-2 光子晶體理論 4-2-1 晶格與倒晶格 52 4-2-2 光子晶體超稜鏡現象(Superprism Effect) 55 第5章 實驗備製 5-1 樣品備置 5-1-1 材料介紹 59 5-1-2 樣品製作流程 63 5-2 實驗架設 65 5-3 掃描式電子顯微鏡(Scanning Electron Microscope, SEM) 70 5-4 實驗量測 5-4-1 超稜鏡現象量測 74 5-4-2 光繞射特性觀測及穿透度-電壓(T-V)繞射效率特性量測72 第6章 實驗結果與數值模擬分析 6-1 結構模擬結果與掃描式電子顯微鏡(SEM)影像 6-1-1 全像干涉場模擬(模擬光子晶體結構) 75 6-1-2 掃描式電子顯微鏡(SEM)影像 77 6-2 繞射圖案實驗結果與模擬比較 81 6-3 改變入射光角度量測繞射光強之變化 85 6-4 外加電壓下的繞射效率量測 89 6-5 超稜鏡現象量測結果 92 第7章 結論與未來展望 7-1 結論 99 7-2 未來展望 100 參考文獻

    參考文獻
    [1]松本正一 角田市良 合著,劉瑞祥 譯, “液晶之基礎與應用,”
    國立編譯館出版 (1996).
    [2]液晶應用技術研究會 著, “最新液晶應用技術”, 建興出版社
    (1997).
    [3]顧鴻壽 編著, “光電液晶平面顯示器-第二版”, 新文京開發
    出版社(2004).
    [4]小林駿介 著, “e世代液晶顯示器”, 全華圖書 (2002).
    [5]趙中興 著, “顯示器原理與技術”, 全華圖書 (2001).
    [6]Pochi Yeh et al, “Optical of Liquid Crystal Display”,
    John Wiley & Sons Inc. (2006).
    [7]李冠卿 著, “近代光學”, 聯經出版事業公司(1988).
    [8]苗村省平 著,陳建銘 譯, “液晶顯示器技術入門” ,全華圖書
    (2005).
    [9]J. G., and H. C.,”Polymer stabilized liquid crystal
    films reflecting both right- and left-circularly
    polarized light”, Appl. Phys, Lett. 93, 201901(2008).
    [10]S. R., and C. B.,” Broadband reflective liquid
    crystalline gels due to the ultraviolet light
    screening made by the liquid crystal”, Appl. Phys,
    Lett. 89, 251907(2006).
    [11]Z. B., and K. L., ” Characteristics of selective
    reflection of chiral nematic liquid crystalline gels
    with a nonuniform pitch distribution”, Appl. Phys,
    Lett. 91, 201908(2007).
    [12]J. W. M., and G. D. J., ”Anemia detection utilizing
    diffuse reflectance spectra from the palpebral
    conjunctiva and tunable liquid crystal filter
    technology”, SPIE, 6177, 6177C(2006).
    [13]王珍珍, “混合聚亞醯胺配向膜調控液晶預傾角之研究及應
    用” 國立成功大學, 光電科學與工程研究所 (2008).
    [14]黃啟炎, "液晶-聚合物混合薄膜之光學二倍頻現象之研究", 國
    立成功大學, 物理研究所 (2005).
    [15]李明賢, “液晶聚合物薄膜光子晶體超菱鏡現象之研究”, 國
    立成功大學, 物理研究所 (2005).
    [16]葛士瑋, “利用應力調至聚合物混合液晶薄膜製作可調式分光
    元件”, 國立成功大學, 光電科學與工程研究所 (2007).
    [17]V. G. Chigrinov, “Liquid crystal devices-Physics and
    Applications”, Artech House, 1st ed (1999)
    [18]Michael J. Escuti and Gregory P. Crawford, Mol.
    Cryst. Liq. Cryst., Vol. 421, pp. 23–36(2004)
    [19]S. T. Wu and Andy Y. G. Fuh, “Lasing in photonic
    crystals based on dye-doped Holographic polymer-
    dispersed liquid crystal reflection gratings”, Jpn.
    J. Appl. Phys. 44, 977 (2005)
    [20]Y. Lin, P. R. Herman and E. L. Abolghasemi, “Proposed
    single-exposure holographic fabrication of microsphere-
    type photonic crystals through phase-mask
    techniques”, J. Appl. Phys. 97, 096102 (2005)
    [21]Y. J. LIU and X. W. SUN,” Electrically Tunable Three-
    Dimensional Holographic Photonic Crystal Made of
    Polymer-Dispersed Liquid Crystals Using a Single
    Prism”, Jpn. J. Appl. Phys., 46, 6634(2007)
    [22]E. Yablonovitch,” Inhibited Spontaneous Emission in
    Solid-State Physics and Electronics”, Phys. Rev.
    Lett. 58, 2059 (1987).
    [23]S. John,” Strong localization of photons in certain
    disordered dielectric superlattices”, Phys. Rev.
    Lett. 58, 2486 (1987).
    [24]欒丕綱、陳啟昌,“光子晶體 從蝴蝶翅膀到奈米光子學”,五
    南出版社 (2005).
    [25]M. J. Madou, “Fundamentales of Microfabrication”,
    CRC Press, Boca Raton, 2002.
    [26]羅吉宏, “薄膜科技與應用”, 全華科技圖書 (2004)
    [27]H. B. Sun, S. Matsuo and Hiroaki Misawa, “Three-
    dimensional photonic crystal structures achieved with
    two-photon-absorption photopolymerization of resin”,
    Appl. Phys. Lett. 74, 786 (1999)
    [28]P. N. Prasad, “Nanophotonics”, John Wiley & Sons
    (2004)
    [29]M. Kim, D. Kim, S. Lee and O’Dae Kwon, “Wet etching
    fabrication of photonic quantum ring laser”, J. Appl.
    Phys. 96, 4742 (2004)
    [30]F. Pommereau, L. Legouezigou, S. Hubert, S. Sainson,
    J. P. Chandouineau, S. Fabre, B. Lombardet, R. Ferrini
    and R. Houdre, “Fabrication of low loss two-
    dimensional InP photonic crystals by inductively
    coupled plasma etching”, J. Appl. Phys. 95, 2242
    (2004)
    [31]T. Kawashima, K. Miura, T. Sato and S. Kawakami,
    “Self-healing effects in the fabrication process of
    photonic crystals”, Appl. Phys. Lett. 77, 2613 (2000)
    [32]J. Deng , X. Tao, “A simple self-assembly method for
    colloidal photonic crystalswith a large area”,Journal
    of Colloid and Interface Science 286, 573–57(2005)
    [33]S. L. Kuai, G. Bader and P. V. Ashrita, “Tunable
    electrochromic photonic crystals”, Appl. Phys. Lett.
    86, 221110 (2005)
    [34]S. Noda, N. Yamamoto, M. Imada, H. Kobayashi, and M.
    Okano, “Alignment and stacking of semiconductor
    photonic bandgaps by wafer-fusion”, J. Lightwave
    Technol. 17, 1948 (1999)
    [35]M. Maldovan, E. L. Thomas and C. W. Carter, “Layer-by-
    layer diamond-like woodpile structure with a large
    photonic band gap”, Appl. Phys. Lett. 84, 362 (2004)
    [36]Max-Planck-Institute of Microstructure Physics,”
    Tetragonal photonic woodpile structures “Appl. Phys.
    B 76, 729–734 (2003)
    [37]M.Straub, M. Gu,” Near-infrared photonic crystals
    with higher-order bandgaps generated by two-photon
    photopolymerization”, Opt. Let., 27, 1824(2002)
    [38]James J. Raftery, Jr., Aaron J. Danner, Jason C. Lee,
    and Kent D. Choquettea, “Coherent coupling of two-
    dimensional arrays of defect cavities in photonic
    crystal vertical cavity surface-emitting lasers”,
    Appl. Phys. Lett. 86, 201104 (2005)
    [39]A. E. Vasdekis, G. A. Turnbull, I. D. W. Samuela, P.
    Andrew and W. L. Barnes, “Low threshold edge emitting
    polymer distributed feedback laser based on a square
    lattice”, Appl. Phys. Lett. 86, 161102 (2005)
    [40]Lu Chena and A. V. Nurmikko, “Fabrication and
    performance of efficient blue light emitting III-
    nitride photonic crystals”, Appl. Phys. Lett. 85,
    3663 (2004)
    [41]S. Kim, Gregory P. Nordin,” Ultracompact high-
    efficiency polarizing beam splitter with a hybrid
    photonic crystal and conventional waveguide
    structure”, OPT. LET. 28, 2384(2003)
    [42]H. Kosaka, et. al., Phys. Rev. B, vol. 58, 10096
    (1998).
    [43]H. Kosaka, et al. J. Lightwave Technol. Vol. 17, 2032
    (1999).
    [44]A. Mekis, J. C. Chen, “High Transmission through
    Sharp Bends in Photonic CrystalWaveguides”, Phy. Rev.
    Lett., 77, 3787(1996)
    [45]J. C. Kinght, “Photonic crystal fibres”, Nature 424,
    847 (2003)
    [46]M. Senechal, “What is a quasi-crystals?”, American
    Mathematical Society, 53, 886(2006)
    [47]Joseph W. Perry, “Update on 3D displays”,NATURE,
    451, 636 (2008)
    [48]L. Z. Cai, X. L. Yang, and Y. R. Wang, “All fourteen
    Bravais lattices can be formed by interference of four
    noncoplanar beams”, Opt. Lett. 27, 900 (2002)
    [49]Kittel, “Introduction to Solid State Physics 8/e”,
    John Wiley and Sons, Inc.
    [50]鄭玄昌, "數位電視地面廣播系統DVB-T 之數位接收前端電路
    設計", 國立中山大學, 電機工程學系碩士班 (2005).
    [51]S. Noda and T. Baba, “Roadmap on photonic crystals”,
    Kluwer Academic Publishers (2003)
    [52]H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T.
    Tamamura, T. Sato, and S. Kawakamib, “Superprism
    phenomena in photonic crystals”, Phys. Rev. B 58,
    R10096 (1998)
    [53]S. Xiong, H. Fukshima, ”Analysis of light propagation
    in index-tunable photonic crystals”, J. Appl. Phys.,
    94, 1286(2003)
    [54]H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T.
    Tamamura, T. Sato, and S. Kawakamib, “Photonic
    crystals for micro lightwave circuits using wavelength-
    dependent angular beam steering”, Appl. Phys. Lett.
    74, 1370 (1999)
    [55]Y. Liu, S. Liu, and X. Zhang, “Fabrication of three-
    dimensional photonic crystals with two-beam
    holographic lithography”, Appl. Opt. 45, 480 (2006)
    [56]Suraj P . Gorkhali, Jun Qi, and Gregory P . Crawford,
    “Switchable quasi-crystal structures with five-,seven-
    , and ninefold symmetries”, Journal of the Optical
    Society of America B ,23, 149 (2006)
    [57]http://newton.umsl.edu/run//nano/reltutor2.html

    下載圖示 校內:2010-07-17公開
    校外:2011-07-17公開
    QR CODE