簡易檢索 / 詳目顯示

研究生: 王煒晴
Wang, Wei-Qing
論文名稱: 考慮流固耦合及樁土互制效應下儲槽受正弦波地震動之有限元素分析
Finite Element Analysis of a Storage Tank under Sine Wave Ground Motion with Fluid-Solid Coupling and Soil-Structure Interaction Effects
指導教授: 胡宣德
Hu, Hsuan-Teh
共同指導教授: 吳俊霖
Wu, Chiun-Lin
張長菁
Chang, Chang-Ching
陳家漢
Chen, Chia-Han
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 239
中文關鍵詞: 流固耦合土壤結構互制地震歷時分析流體晃動ABAQUS
外文關鍵詞: ABAQUS, fluid-solid coupling, soil structure interaction, Seismic time analysis, Fluid sloshing
相關次數: 點閱:75下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 液體儲罐是石化、水工及民用建築常用之液體儲存容器。台灣地震頻發,儲罐時刻受到地震威脅。由於儲罐內存有液體,其受震反應與其他結構物不同,受震時液體造成的晃動波將對儲罐產生動態壓力,使得儲罐破壞。至今國際上現有的儲罐設計規範及標準大多參考地震負載和操作壓力的靜載對設備失效之影響,缺乏地震激勵作用下儲罐內液體晃動及流固耦合動態載荷對設備失效之影響。
    因此本文利用有限元素分析軟體ABAQUS進行時間域的顯性動力分析,除了在進行儲槽流固耦合CEL分析外,同時考慮樁土互制效應來模擬儲槽結構受震之反應,將其結果與相對應振動台試驗結果進行比較。依據儲槽桶內含流體之不同,可分為無流體模型、含高度100 mm流體模型、含高度200 mm流體模型。首先將Abaqus模態分析求解所得之顯著頻率與試驗結果進行比較,驗證模型之準確性。之後給予模型重力平衡之擬靜態分析,將重力平衡完成模型分別進行受接近流體顯著頻率2 Hz及接近砂土顯著頻率 20 Hz的0.2 g或0.3 g正弦波振動之動力分析,分析模型結構不同位置受震反應及儲槽桶內流體晃動情形。於分析中同時對比土壤線性與非線性之差異及部分參數敏感度。

    Frequent earthquakes in Taiwan lead to a constant earthquake threat to the storage tanks. Since the tank contains liquid, its seismic response is different from that of other structures, the sloshing waves caused by the liquid during the earthquake will generate dynamic pressure on the tank, causing the tank to be damaged.
    Therefore, in this paper, the finite element analysis software as known as ABAQUS is used to perform the explicit dynamic analysis in the time domain. In addition to fluid-structure coupling CEL analysis of the tank, the interaction between the pile and the soil interaction effect was also considered to simulate the seismic response of the structure of the storage tank, and the results are compared with the corresponding vibrating table test results. Depending on the fluid contained in the tank, it can be divided into no-fluid model, fluid model containing 100 mm height, and fluid model containing 200 mm height. Firstly, the significant frequencies obtained from the Abaqus modal analysis were compared with the test results to verify the accuracy of the modal. Then, the model was subjected to a gravitational equilibrium simulated static analysis, and the gravitational equilibrium completed model was subjected to 0.2 g or 0.3 g Sine wave vibration at 2 Hz near the significant frequency of the fluid and 20 Hz near the significant frequency of the sand, and the seismic response od the model structure at different locations and the fluid sloshing in the storage tank barrel were analyzed. The sensitivity of some parameters and the difference between linear and non-linear soil were also compared at the same time.

    摘要 i 誌謝 viii 目錄 x 表目錄 xiv 圖目錄 xix 第一章 緒論 1 1.1研究動機及目的 1 1.2本文內容及架構 2 第二章 文獻回顧 3 2.1流固耦合分析理論 3 2.2土壤結構互制 5 2.3有限元素法 7 2.3.1實體元素 7 2.3.2殼元素 8 2.3.3歐拉元素 9 2.3.4無限元素 10 2.3.5樁土互制 11 2.4 顯性動力學 12 2.5擬靜態分析 13 2.6土壤塑性模型 14 2.6.1 Mohr-Coulomb模型 14 2.6.2 Extended Drucker-Prager模型 16 2.7雷利阻尼 19 2.7.1材料阻尼設定 19 2.7.2土壤阻尼設定 20 2.8流體晃動 22 2.8.1流體晃動簡述 22 2.8.2三維直立圓柱容器內液體晃動 23 第三章 試驗模型 27 第四章 數值模型之建立 34 4.1概述 34 4.2分析模型 34 4.3收斂性分析 35 4.3.1儲槽桶之收斂性 35 4.3.2基樁之收斂性 37 4.4材料性質設定 41 4.5儲槽模型簡述 42 4.6 土壤模型簡述 44 4.7 流體模型簡述 46 4.8介面接觸行為之模擬 48 4.9初始大地應力 51 4.10雷利阻尼設定 53 第五章 有限元素分析之結果 57 5.1 概述 57 5.2 自然頻率分析 57 5.3 靜力分析 60 5.3.1無流體實體有限元素土壤模型擬靜態分析 60 5.3.2含流體實體有限元素土壤模型擬靜態分析 68 5.3.3擬靜態分析結果比較 75 5.4 動力分析 80 5.4.1 無流體2 Hz 動力分析 83 5.4.2無流體20 Hz動力分析 99 5.4.3含100 mm流體2 Hz動力分析 115 5.4.4含100 mm流體20 Hz動力分析 136 5.4.5含200 mm流體2 Hz動力分析 148 5.4.6含200 mm流體20 Hz動力分析 161 5.4.7無流體20 Hz動力分析参数敏感度對比 173 5.4.8動力分析結果比較 181 5.5流體晃動模式 189 第六章 結論與建議 198 6.1結論 198 6.2建議 201 參考文獻 202 附錄:Case01線性土壤模型 (XZ)Input File 205 附錄:Case03 Mohr-Coulomb塑性土壤 (XZ)Input File 221

    [1] Praveen K. Malhotra (2006). Earthquake Induced Sloshing in Tanks with Insufficient Freeboard. Structural Engineering International, 16(3), 222-225.DOI:10.2749/101686606778026466
    [2] Derrick Watkins, Matthew Tobolski and Richard Wood (2013). Modal Combination of Seismically Induced Hydrodynamic Loading in Liquid Storage Tanks.
    [3] 曾世荣(2018)。地震激励储罐液体晃动动力学特性及液击冲击失效。南昌大学。
    [4] 陳一豐、昝世蓉(2013)。強震引發常溫儲槽液面晃動對儲槽安全性之影響評估。工業安全衛生,293 期,64-74。DOI:10.6311/ISHM.201311(293).0007
    [5] Po-Chi Lo (2003). Analysis of Soil-structure Interaction By Sub-structure Method. National Chiao Tung University.
    [6] 葉鼎盛(2015)。離岸風機結構與樁土互制之有限元素自振分析。 國立成功大學碩士論文。
    [7] 陳正興、柯永彥、許尚逸(2006)。核能一廠乾式貯存設施結構地震之安全審查與確認分析期末報告。
    [8] WANG Fei, WANG Xian, CHEN Tao, et al (2018). Implementation of Rayleigh damping in Abaqus. Computer Aided Engineering,27(5),72-76.
    [9] W.F. Robert, T. M. Alan, J. P. Philip (2015). Introduction to fluid mechanics, Fifth edition. Introduction to Fluid Mechanics, Fifth Edition,1–745.
    [10] 宋学官、蔡林、张华(2012)。ANSYS 流固耦合分析与工程实例。中国水利水电出版社。
    [11] J. Jablonski, P. Carlucci, R. Thyagarajan, B. Nandi and J. Arata (2012). Simulating Underbelly Blast Events using Abaqus/Explicit -CEL. SIMULIA customer conference.
    [12] Smojver, Ivica and Darko Ivančević (2010). Coupled Euler Lagrangian approach using 203 Abaqus/explicit in the bird strike aircraft damage analysis. SIMULIA Cust. Conf., 1–14.
    [13] 楊樹華(2000)。土壤∼結構互制作用對結構物動力反應之影響。國立臺灣大學土木工程學研究所,博士論文。
    [14] Dassault Systèmes Simulia (2014). Abaqus Analysis User’s Guide, vol4.In ABAQUS 6.14 Analysis User’s Guide, vol. IV.
    [15] Dassault Systèmes Simulia (2014). Abaqus Analysis User’s Guide, vol2.In ABAQUS 6.14 Analysis User’s Guide, vol. II.
    [16] Indrajit Chowdhury and Shambhu Dasgupta (2003). Computation of Rayleigh damping coefficients for large systems. Electron Journal Geotechnical Engineering, 43, 6855-6868.
    [17] 黄愉太(2015)。飞机油箱晃动流固耦合动力学研究。广州华南理工大学。
    [18] American Society of Civil Engineers (2017). Seismic analysis of safety-related nuclear structures. American Society of Civil Engineers.
    [19] 中國石油天然氣集團公司(2014)。立式圓筒形鋼製焊接油罐設計規範。北京中國計劃出版社。
    [20]李遇春(2017)。液體晃動動力學基礎。科學出版社。
    [21]翁作新、陳家漢、彭立先、李偉誠(2003)。大型振動台剪力盒土壤液化試驗(II)- 大型砂試體之準備與振動台初期試驗。報告編號:NCREE-03-042。
    [22] 盧亮宇(2021)。考量流固耦合及樁土互制效應之儲槽受震反應分析及振動台試驗。國立成功大學碩士論文。
    [23] W. Liu and X. J. Yang (2013). Damage evolution with growing cyclic creep and life prediction of MDYB-3 PMMA. Fatigue Fract. Eng. Mater. Struct., vol. 36, no. 6, pp. 483–491.DOI: 10.1111/ffe.12017
    [24] 張國鎮、王修駿、劉光晏、翁作新、陳家漢、陳正興、賴姿妤、周贊翔(2012)。樁基礎沖刷橋梁模型之振動台試驗研究(I)。報告編號:NCREE-2012-025。
    [25] W. F. Robert, T. M. Alan, J. P. Philip (2015). Introduction to fluid mechanics, Fifth edition. Introduction to Fluid Mechanics, Fifth Edition. pp. 1–745.
    [26] Tippmann, J. D., Prasad, S. C. , Shah, P. N. , Corp, S. (2009). 2-D Tank Sloshing Using the Coupled Eulerian- LaGrangian ( CEL ) Capability of Abaqus / Explicit. Simulia Cust. Conf., pp. 1–11.
    [27] Ray W. Clough, Joseph Penzien (1993). Dynamics of structures. New York : McGrawHill, Second Edition.
    [28] F. Hammelmuller and C. Zehetner (2015). Increasing numerical efficiency in coupled eulerian-lagrangian metal forming simulations. Proc. 8th Int. Conf. Comput. Plast. -Fundam. Appl. COMPLAS 2015, pp. 727–733.
    [29] 郭家宏(2019)。鋼筋混凝土橋樑結構於樁土互制下之非線性有限元素分析。 國立成功大學碩士論文。
    [30] Ibrahim, R. A (2005). Liquid Sloshing Dynamics: Theory and Applica-tions. Cambridge University Press, Cambridge.
    [31] Housner, G.W. (1957). Dynamic Pressure on Accelerated Fluid Containers. Bulletin of the Seismological Society of America,15-35.
    [32] 許皓程(2018)。馬鞍山核電廠圍阻體土壤結構互制之動力分析。國立成功大學碩士論文。

    無法下載圖示 校內:2027-08-03公開
    校外:2027-08-03公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE