簡易檢索 / 詳目顯示

研究生: 徐治暘
Hsu, Chih-Yang
論文名稱: 製作二氧化銅鋁薄膜及它應用於紫外光偵測器之研究
A study of forming CuAlO2 thin film and its application to UV detector
指導教授: 彭洞清
Perng, Dung-Ching
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 66
中文關鍵詞: 二氧化銅鋁紫外光檢測器P型透明導電膜電鍍
外文關鍵詞: CuAlO2, UV photodetector, P-type transparent conducting oxide, Electrochemical plating
相關次數: 點閱:86下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要探討於氧化鋁基板上製作二氧化銅鋁薄膜及其應用於光檢測器之研究。我的實驗以濺鍍銅導電層於氧化鋁基板上,並以電鍍的方式成長氧化亞銅薄膜,之後在大氣環境以1100 °C持溫12個小時,製備出二氧化銅鋁薄膜。
    我們首先使用的是鍍有鉬薄膜的Si基板,並使用不同的製程生長二氧化銅鋁,雖然在XRD的結果上,有產生二氧化銅鋁的峰值,但銅在持溫長時間的情況下出現擴散至基板的現象,因此我們選擇將矽基板替換成氧化鋁基板。
      實驗過程發現:氧化亞銅厚度與持溫時間對形成二氧化銅鋁有著很顯著的影響。相同的氧化亞銅厚度,若持溫的時間太長,則二氧化銅鋁會生成四氧化銅鋁與氧化銅;持溫的時間太短則氧化亞銅無法反應完全。因此厚度的變化與持溫時間的掌控是一個重要的因素。實驗分析以掃描式電子顯微鏡(SEM)、能量分散光譜儀(EDX)、X光繞射分析儀(XRD)、薄膜測厚儀(Alpha Step)進行表面形貌、組成成分、晶體結構和薄膜厚度的分析。
    最後,在二氧化銅鋁薄膜上蒸鍍上一層鋁電極形成光檢測器,並將元件進行IV量測,光檢測器元件量測結果顯示:在5 μm電極間距時,以偏壓6V量測到的暗電流為3.73×10-6 A,85W氙燈照射下光電流則為1.0×10-5 A,約有三倍之放大效果。

    In this study, I investigated methods to form CuAlO2 film using Al2O3 substrate, and its application to UV detector. I sputtered a Cu film on Al2O3 substrate followed by electrochemical plating(ECP) Cu2O film on the Cu coated Al2O3 substrate. A CuAlO2 film can be formed by annealing Cu2O/Cu/Al2O3 films at 1100 °C for 12 hours in air.
    At first, I used Mo coated Si wafer as substrate and used many different processes to grow CuAlO2 film. The XRD results indicate that CuAlO2 film can be formed, however, Cu will diffuse through Mo film and into the Si substrate after the long annealing time at high temperature. Thus,Al2O3 substrate was used to replace the Mo coated Si substrate.
    The experimental results show that the Cu2O thickness determines the exact time it required for the high temperature annealing. For the same thickness of Cu2O film, it reacts with Al2O3 substrate and forms CuAl2O4 and CuO films if over oxidation, but the reaction is not complete if the annealing time is not sufficient. The annealing time temperature, and Cu2O thickness are the key parameters to form CuAlO2 film using Al2O3 substrate. The study used scanning electron microscope (SEM), energy-dispersive X-ray spectroscopy (EDX), X-ray diffractometer (XRD), and Alpha Step to analyze film’s morphology, element’s composition, crystalline phase/orientation, and film thickness respectively.
    Lastly, evaporation of Al film and lift-off process were used to form the electrodes of the photo detector followed by I-V measurements. When the electrode spacing is 5 μm and bias voltage is set at 6 V, I obtained: dark current of 3.73×10-6 A and photocurrent of 1.0×10-5 A under 85W Xenon light illumination. It shows about 3 times of photocurrent amplification.

    中文摘要 Ⅰ Abstract Ⅲ 誌謝 Ⅸ 表目錄 XIII 圖目錄 XIV 第一章 緒論 1 1-1 背景 1 1-2 動機 2 第二章 原理 3 2-1 基本理論概述 3 2-1-1 金屬-半導體接面理論 3 2-1-2 蕭特基接面理論 3 2-2光檢測器工作原理 5 2-2-1 基本操作原理 5 2-2-2 金屬-半導體-金屬光檢測器工作原理 6 2-3 CuAlO2薄膜特性 7 2-3-1 CuAlO2薄膜研究 7 2-3-2 CuAlO2文獻回顧 9 2-4 電化學簡介 10 2-4-1 電鍍基本裝置及電鍍系統 10 2-4-2 電鍍基本原理 12 2-4-3 循環伏安法(Cyclic Voltammetry) 13 2-4-4 定電位電解法(Chronoamperometry) 14 2-4-5 定電流電解法(Chronopotentiometry) 14 2-4-6 法拉第定律 15 2-4-7 電鍍的膜厚計算 15 第三章 實驗 22 3-1 實驗所需材料及設備 22 3-1-1實驗材料、藥品及實驗設備規格 22 3-1-2 濺鍍系統 22 3-1-3 電化學沉積系統 23 3-1-4 高溫方形爐系統 23 3-1-5 蒸鍍系統 24 3-2 實驗流程 25 3-2-1 氧化鋁(Al2O3)基板清洗 26 3-2-2 濺鍍銅(Cu)導電層 26 3-2-3 電鍍氧化亞銅(Cu2O) 26 3-2-4 高溫方形爐氧化 27 3-2-5 製作MSM的交指式電極 27 3-3 分析使用之儀器原理介紹 28 3-3-1掃描式電子顯微鏡(SEM) 28 3-3-2 能量分散式光譜儀(EDX) 30 3-3-3 X光繞射儀(XRD) 31 3-3-4 薄膜測厚儀(Alpha-Step) 32 3-3-6 螢光光譜儀(PL) 32 3-3-7 多功能電源電錶 33 第四章 結果與討論 43 4-1 CuAlO2薄膜的形成 43 4-2 光微影的阻礙 45 4-3 I-V量測 45 4-4 PL量測 46 第五章 結論 62 第六章 參考文獻 64   表目錄 表2-1 文獻回顧 9 表3-1 實驗所用之儀器設備 35 表3-2 實驗所使用之材料與藥品 35 表4-1 不同架構的比較 47 表 4-2 EDX分析 49 表4-3 相同Cu2O厚度,持溫時間不同之比較圖 51 表4-4 持溫時間相同,Cu2O厚度不同之比較圖 55 表4-5 表面粗糙度量測 57   圖目錄 圖 2-1 金屬-n型半導體能帶圖(a)接觸前 (b)接觸後 17 圖 2-2 蕭特基位能障順向偏壓時的四種基本載子傳導示意圖 17 圖 2-3 MSM 光檢測器架構圖圖 18 圖 2-4 金屬-半導體-金屬光檢測器工作原理示意圖 18 圖 2-5 (a)MSM-PD 在不同偏壓能帶圖 19 圖 2-5(b)V=VRT 觸及電壓能帶圖 19 圖 2-5 (C)V=VFB平帶電壓時的能帶圖 19 圖 2-6 Cu2O晶格結構 20 圖 2-7 CuAlO2晶格結構圖 20 圖 2-8 循環伏安圖 21 圖3-5 實驗流程圖 25 圖3-6 元件結構圖 25 圖3-1 濺鍍系統 36 圖3-2 電鍍系統裝置 36 圖3-3 高溫方形爐 37 圖3-4 蒸鍍系統 37 圖3-7 光罩對準機 38 圖3-8 Hitachi S4100 SEM系統 38 圖3-9 掃描式電子顯微鏡基本構造 39 圖3-10 EDX系統 39 圖3-11 實驗所用之XRD系統 40 圖3-12 薄膜測厚儀 40 圖3-13 Alpha-Step原理示意圖 41 圖3-14 PL量測系統示意圖 41 圖3-15 PL原理示意圖 42 圖3-16 LabTracer 2.0示意圖 42 圖4-1 試片1在1000°C持溫3小時的XRD圖 47 圖4-2 試片2在1000°C持溫5小時的XRD圖 48 圖4-3 SiO2/Mo/Cu2O/Al在1000℃持溫24小時之剖面圖 48 圖4-4 Cu2O SEM圖 49 圖4-5 Cu2O XRD圖 50 圖4-6 試片3 -1100°C持溫5小時 52 圖4-7試片4 -1100°C持溫12小時 52 圖4-8 試片5 -1100°C持溫24小時 53 圖4-9 試片3 -1100°C持溫5小時 53 圖4-10 試片4 -1100°C持溫12小時 54 圖4-11 試片5 -1100°C持溫24小時 54 圖4-12 Cu2O不同厚度之剖面圖 55 圖4-13 試片6 -1100°C持溫12小時 56 圖4-14 試片6 -1100°C持溫12小時 56 圖4-15 Al2O3基板之(a)頂視圖 (b)剖面圖 57 圖4-16 不同轉速塗佈光阻、微影後(a)高轉速(b)低轉速 57 圖4-17 試片7 -1100°C持溫12小時 58 圖4-18 試片7 -1100°C持溫12小時 58 圖4-19 IV量測,10 μm電極間距 59 圖4-20 IV量測,5 μm電極間距 59 圖4-21 響應速度 60 圖4-22 氙燈開關間隔秒數圖 60 圖4-23 PL量測圖 61

    [1] P. Sandvik, Mi, F. Shahedipour, R. McClintock, A. Yasan, P. Kung, and M. Razeghi, “AlxGa1-xN for solar-blind UV detectors,” J. Cryst. Growth, 231,pp.366-370,(2001).
    [2] K.K. Chen, F.Y. Hung, S.J. Chang, and S.J. Young, “Optoelectronic characteristics of UV photodetector based on ZnO nanowire thin film,” J. Alloys Compounds,479 , pp.674-677,(2009).
    [3] H.M. Manasevit, F.M. Erdmann, and W.I. Simpson, “The Use of Metalorganics in the Perparation of Semiconductor Materials,” J. Electrochem. Soc., 118, pp. 1864-1868, (1971).
    [4] I. Akasaki and I. Hayashi, “ Research on blue emitting devices,” Ind. Sci. Technol., 17, pp. 48, (1976).
    [5] H. Kawazoe, M. Yasukawa, H. Hyodo, M. Kurita, H. Yanagi, and H.Hosono, "P-type electrical conduction in transparent thin films of CuAlO2," Nature 389, 939-942, (1997).
    [6] W. Schottky, R. Stromer, and F. Waible, Hochfrequenztechnik 37, 162-165,(1931)
    [7] S. M. Sze, “ Physics of Semiconductor Devices”, 2nd, (1981),744.
    [8] W. Schottky, R. Stromer, and F. Waible, Hochfrequenztechnik 37,162-165, (1931).
    [9] K. Lee, M. Shur, T. A. Fjeldly, and T. Ytterdal, Semiconductor Devics Modeling for VLSI, Englewood Cliffs, NJ: Prentice-Hall, (1993).
    [10] M. Sze, D. J. Coleman, JR. and A. Loya, Solid-State Electronics, 14, 1209 ,(1971).
    [11] E. Budianu, M. Purica, F. Iacomi, C. Baban, P. prepelita, and E. Manea, “Silicon metal-semiconductor-metal photodetector with zinc oxide transparent conducting electrodes,“ Thin Solid Films, 516, pp.1629-1633, (2008).
    [12] M. Sze, D. J. Coleman, JR. and A. Loya, Solid-State Electronics, 14,1209-1218, (1971).
    [13] H. Kawazoe, H. Yanagi, K. Ueda, and H. Hosono, "Transparent p-type conducting oxides: design and fabrication of p-n heterojunctions," Maters Bulletin 25, 28-36, (2000).
    [14] K. Akimoto, S. Ishizuka, M. Yanagita, Y. Nawa, G. K. Paul, and T. Sakurai, "Thin film deposition of Cu2O and application for solar cells," Solar Energy 80, 715-722, (2006).
    [15] Chin Hock Ong, Hao Gong, Effects of aluminum on the properties of p-type Cu–Al–O transparent oxide semiconductor prepared by reactive co-sputtering, Thin Solid Films 445, 299–303, (2003).
    [16] Shanmin Gao, Yan Zhao, Pingping Gou, Nan Chen and Yi Xie, Preparation of CuAlO2 nanocrystalline transparent thin films with high conductivity, Nanotechnology 14, 538–541, (2003).
    [17] A.N. Banerjee, S. Kundoo, K.K. Chattopadhyay, Synthesis and characterization of p-type transparent conducting CuAlO2 thin film by DC sputtering, Thin Solid Films 440, 5–10, (2003).
    [18] Dae-Sung Kim and Se-Young Choi, Wet-oxidation effect on p-type transparent conducting CuAlO2 thin film, Phys. Stat. Sol. (a) 202, No. 15, R167–R169, (2005).
    [19] J.H. Shy and B.H. Tseng, Characterization of CuAlO2 thin film prepared by rapid thermal annealing of an Al2O3/Cu2O/sapphire structure, Journal of Physics and Chemistry of Solids 66, 2123–2126,(2005).
    [20] 尤光先, 電鍍工程學. 徐氏基金會出版, 1976.
    [21] 賴耿陽, 實用電鍍技術全集, 復漢出版社, 1981.
    [22] R. Friedfeld1, R.P. Raffaelle, J.G. Mantovani,” Electrodeposition of CuInxGa1-xSe2 thin films”, Solar Energy Materials & Solar Cells, 58, p. 375-385, (1999)
    [23] 陳力俊等編著,材料電子顯微鏡學,儀科中心出版。
    [24] Naglaa Fathy, R. K., Massaya Ichimura, “Preparation of ZnS Thin Films by the Pulse Electrochemical Deposition”, Materials Science and Engineering, 107, p. 271-276, (2004).
    [25] M. E. Calixto, R. N. Bhattacharya, P. J. Sebastian, A. M. Fernandez, S. A. Gamboa, R. N. Noufi, “Cu(In,Ga)Se2-Based Photovoltaic Structure by Electrodeposition and Processing”, Solar Energy Materials and Solar Cells, 55, p. 23-29, (1998).
    [26] 許樹恩, 吳泰伯, X光繞射原理與材料結構分析, 中國材料學會, 台灣, p. 169, 1996年
    [27] 陳建隆, 發光二極體之原理與製程: 全華圖書, 2006, ch. 5; ch.6.
    [28] Xinyan Yan, Y.A. Chang, “A thermodynamic analysis of the Cu–Si system”, Journal of Alloys and Compounds, 308, p. 221-229, (2000).
    [29] J. L. Murray, A. J. McAIister, “The AI-Si (Aluminum-Silicon) System”, Bulletin of Alloy Phase Diagrams, 5, No. 1, (1984).
    [30] M. S. Lee, T. Y. Kim, D. Kim, Appl. Phys. Lett. 79, 2028, (2001).

    下載圖示 校內:2017-07-24公開
    校外:2017-07-24公開
    QR CODE