簡易檢索 / 詳目顯示

研究生: 張正坤
Chang, Zheng-Kun
論文名稱: 一種新穎低成本室溫可控制形態合成氧化鋅奈米結構之方法
A novel, low-cost, room-temperature process for the synthesis of ZnO nanostructures with controlled morphologies
指導教授: 丁志明
Ting, Jyh-Ming
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 104
中文關鍵詞: 氧化鋅可控制形態室溫低成本新穎
外文關鍵詞: low-cost, room-temperature, ZnO nanostructures, controlled morphologies, A novel
相關次數: 點閱:68下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 成長氧化鋅奈米線典型之合成方法為化學氣相沉積法,其溫度通常大於500℃,本研究利用射頻磁控濺鍍系統於室溫下成長氧化鋅奈米結構於各種基板上,藉由改變催化劑和濺鍍參數如功率、工作距離、工作壓力及氧分壓等參數,基板包含玻璃、矽基板、PET等,催化層以沉浸法、化學鍍膜法和物理氣相沉積法等製備。在此鍍膜的方法,各種液態催化劑被使用於不同濃度沉積於積板表面,並改變基板上之狀態製造可能之應力釋放點,沉積後之基板放置於射頻磁控濺鍍機之艙體於室溫下成長氧化鋅奈米結構,並探討各種參數對於氧化鋅結構、成份與性質的影響,並以掃描式以及穿透式電子顯微鏡光觀察其表面型態、X-ray量測其成份以及晶面以及ESCA量測價態之變化與成份比例,並探討不同pH值之催化劑對於氧化鋅奈米結構等之影響,進一步討論此新穎成長氧化鋅方法的成長機制。

    Chemical vapor deposition (CVD) is one of the typical methods used extensively for the synthesis of ZnO nanostructures. The synthesis temperature is usually greater than 500 °C. Such a high synthesis temperature excludes the use of glass or polymer substrates. In this research, a novel, room temperature process for the synthesis of ZnO nanostructures is developed. The process includes the use of a catalyst seeded substrate and rf magnetron sputter deposition. The substrates used include glass, Si wafer and polyethylene terephthalate (PET). The catalyst seeding was performed using a dip coating process, a chemical coating process, and a sputter deposition process. In the coating processes, various liquid precursors with different pH values were used. The catalyst seeded substrate was then placed in an rf magnetron sputter deposition chamber for the synthesis of ZnO nanostructures at the room temperature under various deposition conditions. According to the liquid percurors method we used physical plating for the seeding layers and produce the stress reduced points to compare with the liquid precurors which could induce production of different ZnO nanostructures. Depending on the synthesis conditions, particularly the pH value of the seed layer solution different nanostructures of ZnO were obtained. The growth mechanism acting in this novel method of growing ZnO nanostructure has been discussed. The produced ZnO nanostructures were characterized by high resolution electron microscopy, X-ray diffraction and photoluminescence spectroscopy.

    中文摘要…………………………………………………………………….Ⅰ 英文摘要…………………………………………………………………….Ⅱ 致謝………………………………………………………………………….Ⅲ 總目錄……………………………………………………………………….IV 圖目錄………………………………………………………………………..V 表目錄……………………………………………………………………….VI 第一章 緒論 1-1前言……………………………………………………………..1 1-2氧化鋅的結構、基本性質及應用………………………………1 1-3研究動機及目的………………………………………………..3 第二章 文獻回顧 2-1氧化鋅薄膜之文獻回顧………………………………………..4 2-1-1氧化鋅薄膜之簡介……………………………………..4 2-1-2 濺鍍沉積之原理……………………………………….9 2-1-3濺鍍理論………………………………………………13 2-1-4製程條件………………………………………………16 2-2 無電極電鍍…………………………………………………..18 2-3 氧化鋅奈米結構之研究……………………………………..20 2-3-1氧化鋅奈米結構………………………………………20 2-3-2合成氧化鋅奈米結構之方法…………………………24 第三章 實驗方法 3-1 實驗流程圖 …………………………………………………..30 3-2 基板清洗 ……………………………………………………31 3-3 無電鍍鍍Cu 基板之製備…………………………………...32 3-3-1基板種類………………………………………………...32 3-3-2射頻磁控濺渡Ti………………………………………...32 3-4 無電鍍銅………………………………………………… ….33 3-5 催化劑之沉積 ….35 3-6射頻磁控濺鍍ZnO ..35 3-7 試片分析………………………………………………..........36 3-7-1顯微分析………………………………………………..36 3-7-2結構分析………………………………………………..38 3-7-3成分分析………………………………………………..39 3-7-4發光特性分析…………………………………………..39 3-7-5化學鍵結分析…………………………………………..40 第四章 結果與討論 4-1 以無電鍍銅為催化劑合成氧化鋅奈米線…………………..42 4-2 以不同溶劑泡製氯化亞錫合成氧化鋅奈米結構之影響…..48 4-3 不同催化劑對氧化鋅奈米結構成長之影響………………..51 4-4 改變催化劑之不同pH值成長氧化鋅奈米結構的影響……..59 4-5 以物理氣相沉基法沉基催化劑成長氧化鋅奈米構………..72 4-6 氧化鋅濺鍍參數控制對於氧化鋅奈米結構的影響..............74 4-7氧化鋅奈米結構成長機制的探討……………….…………..97 第五章 結論……………………………………………………………….99 第六章 未來工作………………………………………………………...101 參考文獻…………………………………………………………………...102

    1. Gyu-Chul Yi, ChunruiWang and Won Il Park, Semicond. Sci.Technol. 20 (2005) S22–S34
    2. Microsystem Technologies 11 (2005) 416–423
    3. B.P Zhang, N. T. Binh, K. Wakatsuki, Y. Segawa, Y. Kashiwaba, K. Haga Synthesis and Optical Properties of Single Crystal ZnO Nanorods,
    Nanotechnology, v.15, S382-S388, 2004
    4. S. E. Ahn, J. S. Lee, H. Kim, S. Kim, B. H. Kang, K. H. Kim, G. T. Kim,Photoresponse of Sol-gel-synthesized ZnO Nanorods, Appl. Phys. v.84,n.24 p.5022-p.5024, 2004
    5. Zuowan Zhou, Tetropod-shaped ZnO whisker and its composites, Journal of Materials Processing Technology, 89-90, 415, 1999
    6.G. Zou, D. Yu, D. Wang, W. Zhang L. Xu, W. Yu, Y. Qian Controlled Synthesis of ZnO Nanocrystals Column-, Rosette-and Fiber-like Morphologies and Their Photoluminescence Property, Mater. Chem. Phys., v.88, p.15 .154, 2004
    7. Jiansheng Jie, Guanzhong Wang, Qingtao Wang, Yiming Chen,Xinhai Han, Xiaoping Wang, and J. G. Hou, Journal of Physical Chemistry B, v 108, n 32, Aug 12, 2004, p 11976-11980
    8. G.S. Wu, T. Xie, X.Y. Yuan, Y. Lia, L. Yang, Y.H. Xiao, L.D. Zhang, Solid State Communications 134 (2005) 485–489
    9. Michael H. Hwang, Room-Temperature Ultraviolet Nanowire Nanolasers, Science, 292, 1897, 2001
    10. B. J. Jin, Materials Science and Engineering B, 71, 301, 2000
    11. T. Yoshida, Applied Physical Letters, 64, 3243, 1994
    12. Lauren E. Shea, The Eletrochemical Society Interface, Summer,1998
    13. Kang, D.J.; Kim, J.S.; Jeong, S.W.; Roh, Y.; Jeong, S.H.; Boo, J.H.,
    Thin Solid Films, v 475, n 1-2 guchi and H. Watanabe, Journal of Crystal Growth Volumes 214-215 , 2 June 2000, Pages 77-80
    14. Ko, Hyungduk; Tai, Weon-Pil; Kim, Ki-Chul; Kim, Sang-Hyeob; Suh, Su-Jeong; Kim, Young-Sung, SPEC. ISS., Mar 22, 2005, p160-165
    15. K. Haga, M. Kamidaira, Y. Kashiwaba, T. Seki Journal of Crystal Growth, v 277, n 1-4, Apr 15, 2005, p 352-358
    16. Akira Ohtomo, Atsushi Tsukazaki, Akira Ohtomo et al 2005 Semicond. Sci. Technol. 20 S1-S12
    17. H. Gomeza, A. Maldonado,M. de la L. Olvera, D.R. Acosta, Solar Energy Materials & Solar Cells 87 (2005) 107–116
    18. Lu, Jianguo, Applied Surface Science, v 207, n 1-4, Feb 28, 2003, p
    295-299
    19. Minami, Tadatsugu, Thin Solid Films, v 445, n 2, Dec 15, 2003, p 268-273
    20. Shaoqiang, Chen, Applied Surface Science, v 241, n 3-4, Mar 15, 2005, p 384-391
    21. D. Litvinov, A. Rosenauer, and D. Gerthsen, Applied Physics Letters, v 81, n 4, Jul 22, 2002, p 640
    22. G. Wedler a, J. Walz a, T. Hesjedal b, E. Chilla b, R. Koch, Surface Science 402–404 (1998) 290–294
    23. Lu, Jianguo, Applied Surface Science, v 207, n 1-4, Feb 28, 2003, p 295-299
    24. Minami, Tadatsugu, Thin Solid Films, v 445, n 2, Dec 15, 2003, p 268-273
    25. Ko, Hyungduk; Tai, Weon-Pil; Kim, Ki-Chul; Kim, Sang-Hyeob; Suh, Su-Jeong; Kim, Young-Sung, SPEC. ISS., Mar 22, 2005, p160-165
    26. K. Haga, M. Kamidaira, Y. Kashiwaba, T. Seki Journal of Crystal Growth, v 277, n 1-4, Apr 15, 2005, p 352-358
    27. Shaoqiang, Chen, Applied Surface Science, v 241, n 3-4, Mar 15, 2005, p 384-391
    28. Hadi Savaloni, Simin Bagheri Najmi, Vacuum 66 (2002) 49–58
    29. Guodong Yuan, Zhizhen Ye, Journal of Crystal Growth, v 273, n 3-4,
    Jan 3, 2005, p 451-457
    30. Sakai, K.; Komaki, H.; Yoshino, K.; Sakemi, H.; Awai, K.; Yamamoto, T.; Ikari, T., Materials Science and Engineering B Volume 118, Issues 1-3 , 25 April 2005, Pages 70-73
    31. Lin, Su-Shia; Huang, Jow-Lay; Lii, Ding-Fwu, Surface and Coatings Technology, v 176, n 2, January, 2004, p 173-181
    32. Zhu, Shen, Journal of Crystal Growth, v 211, n 1, 2000, p 106-110
    33. Z. Wang and J. Song, Science 312, 242 (2006).
    34. S. H. Jo, J. Y. Lao, Z. F. Ren, R. A. Farrer, T. Baldacchini, J. T. Fourkas, Appl. Phys. Lett. 83, 4821 (2003).
    35. Guoqiang Zhang,a_ Atsushi Nakamura, Toru Aoki, Jiro Temmyob, Yoshio Matsui, “Au-assisted growth approach for vertically aligned ZnO nanowires on Si substrate,” APL 89, 113112 (2006).
    36. Z. W. Pan, Z. R. Dai, and Z. L. Wang, Science 209, 1947 (2001)
    37. X. Y. Kong, Y. Ding, R. S. Yang, and Z. L. Wang, Science 303, 1348 (2004)
    38. X. Y. Kong and Z. L. Wang, Appl. Phys. Lett. 84, 975 (2004)
    39. Z. L. Wang, X. Y. Kong, and J. M. Zuo, Phys. Rev. Lett. 91, 502 (2003)
    40. H. T. Ng, J. Li, M. K. Smith, P. Nguyen, A. Cassell, J. Han, and M. Meyyappan,Science 300, 1249 (2003)
    41. J. J. Wu, S. C. Liu, C. T. Wu, K. H. Chen, and L. C. Chen, Appl. Phys. Lett. 81, 7(2002)
    42. R. -C. Wang, C. -P. Liu, J. -L. Huang, S. -J. Chen,Y. -K. Tseng, and S. -C. Kung,Appl. Phys. Lett. 87, 013110 (2005)
    43. Y. Gu, Igor L. , M. Yin, S. O’Brien, and G. F. Neumark, APPLIED PHYSICS LETTERS VOLUME 85, NUMBER 17
    44. Justin C. Johnson, Haoquan Yan,, Peidong Yang, and Richard J. Saykally, J. Phys. Chem. B 2003, 107, 8816-8828
    45. A. Sekar, S.H. Kim, A. Umar, Y.B. Hahn, Journal of Crystal Growth
    277 (2005) 471–478
    46.M. J. Zheng, Fabrication and optical properties of large-scale uniform zinc oxide nanowire arrays by one-step electrochemical deposition technique,Chemical Physical Letters, 363, 123, 2002
    47.Minoru Satoh, Epitaxial growth of zinc oxidewhiskers by chemical-vapor deposition under atmospheric pressure, Japanese Journal of Applied Physics, 38, L586, 1999
    48. y.w. heo, b.s. kang, l.c. tien, d.p. Norton, f. ren, j.r. la roche, s.j. pearton, Appl. Phys. A 80, 497–499 (2005)
    49.Y.S. Chang and J.M. Ting Department of Materials Science and Engineering, National Cheng Kung University, Tainan, Taiwan
    50.J.K. Jian , Cong Wang , Z.H. Zhang , X.L. Chen , L.H. Xu , T.M. Wang Materials Letters 60 (2006) 3809–3812
    51. Xiang Liu, Xiaohua Wu, Hui Cao, and R. P. H. Chang , J. Appl. Phys., Vol. 95, No. 6, 15 March 2004,3141-3147
    52.Y.Q. Chen , J. Jiang, Z.Y. He, Y. Su, D. Cai, L. Chen Materials Letters 59 (2005) 3280 – 3283
    53. X. S. Peng, G. W. Meng, J. Zhzng, X. F. Wang, Y. W. Wang, C. Z. Wang and L. D. Zhang, J. Mater. Chem., 2002, 12, 1602
    54.陳銘達”濺鍍沉積法合成氧化鋅奈米線/棒於矽基板”國立成功大學碩士論文 (2005)

    下載圖示 校內:2008-08-08公開
    校外:2008-08-08公開
    QR CODE