簡易檢索 / 詳目顯示

研究生: 陳虹余
Chen, Hung-Yung
論文名稱: 不同高度跌倒時上肢關節受力與不同能量吸收對比之間的相關性
The Correlation between Energy Absorption Ratio and Joint Loading of the Upper Extremity under Different Fall Heights
指導教授: 周伯禧
Chou, Pei-Hsi
周有禮
Chou, You-Li
學位類別: 碩士
Master
系所名稱: 工學院 - 醫學工程研究所
Institute of Biomedical Engineering
論文出版年: 2003
畢業學年度: 91
語文別: 中文
論文頁數: 61
中文關鍵詞: 能量吸收對比肩關節肘關節跌倒
外文關鍵詞: energyabsorption ratio, elbow joint, shoulder joint, fall
相關次數: 點閱:145下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 前傾跌倒過程中,肩關節與肘關節為主要緩衝耗能的關節。本實驗的目的即在探討肘關節與肩關節在跌倒過程中所受之力與不同能量吸收對比間的關係。
    本研究共邀請10位無任何上肢傷殘病史的男性受測者參與實驗計畫,其平均年齡為21.6±3.8歲,平均身高為170.4±2.6公分,平均體重則為63.2±4.9公斤。
    每次跌落後,都會詢問受測者之疼痛感受,以問卷之疼痛指數為準,將資料分組,共分為三組:最舒適組、適中組與最不舒適組。藉由不同程度的疼痛,觀察能量吸收對比的變化,以及力板反作用力曲線上的不同。
    在此次跌倒高度分別為十公分及二十公分的實驗中,結果顯示當能量吸收對比較小時,也就是肩關節和肘關節能量分配較均勻時,受測者會感到較舒適。

    Objective: Elbow joint and shoulder joint play important roles to absorb impact energy during falls. This study is in order to determine the best energy distribution between elbow joint and shoulder joint.

    Design:Subjects were asked to perform forward falls. All the results were divided into three groups : comfortable group, moderate group and uncomfortable group by pain score of the questionnaire.

    Background:A fall onto the outstretched hand is an important cause of upper extremity injury. Elbow and shoulder flexion can absorb more impact energy to prevent injury. However, the pain score was different by different energy absorption between shoulder and elbow.

    Method:Ten healthy young male subjects, with an average age of 21.6, were studied. The kinematics and kinetics of the upper extremity were investigated under different group.
    Results:The comfortable group has the best energy distribution between shoulder and elbow joint.

    Conclusions: Small energy absorption ratio can reduce the loading of shoulder joint. Subjects feel better because of more average energy distribution. Joint muscle contract can increase the effect of damping and stiffness.

    第一章 緒論.....................................................1 1.1前言.........................................................1 1.2文獻回顧.....................................................3 1.3研究動機.....................................................6 1.4實驗參數定義.................................................7 1.5能量吸收對比.................................................9 1.6實驗假說.....................................................9 第二章 實驗理論................................................10 2.1理論基礎....................................................10 2.1.1關節作用力及力矩........................................11 2.1.2關節能量................................................13 2.2實驗假設....................................................14 2.3反光球標記方式..............................................14 2.4靜態與動態資料描述..........................................15 2.4.1靜態資料.................................................15 2.4.2動態資料.................................................15 2.5關節中心....................................................16 2.5.1腕關節中心...............................................16 2.5.2肘關節中心...............................................16 2.5.3肩關節中心...............................................17 2.6座標系定義..................................................17 2.6.1實驗室座標系.............................................18 2.6.2力板座標系...............................................19 2.6.3解剖座標系...............................................20 2.7運動學分析..................................................24 2.7.1質心位置、質心速度與質心加速度...........................25 2.7.2關節角度.................................................25 2.7.3角速度與角加速度.........................................28 2.8動力學分析..................................................31 第三章 實驗設備與方法..........................................32 3.1實驗設備....................................................32 3.1.1硬體設備.................................................32 3.1.2軟體設備.................................................34 3.2實驗設計....................................................34 3.2.1人體實驗認許.............................................34 3.2.2受測者資料...............................................35 3.2.3實驗組別.................................................35 3.2.4實驗姿勢.................................................35 3.2.5問卷調查.................................................37 3.3資料收集與處理..............................................37 3.4統計分析....................................................38 3.5實驗流程....................................................38 3.6實驗參數定義................................................39 第四章 實驗結果................................................40 4.1分組依據....................................................40 4.2能量吸收對比比較............................................41 4.2.1 10公分時之能量吸收對比與疼痛指數........................41 4.2.2 20公分時之能量吸收對比與疼痛指數........................42 4.2.3 10公分與20公分最舒適組之能量吸收對比....................43 4.2.4 10公分與20公分最不舒適組之能量吸收對比..................43 4.3關節能量....................................................44 4.3.1 10公分..................................................44 4.3.2 20公分..................................................46 4.4垂直地面反作用力............................................48 4.4.1 10公分.................................................48 4.4.2 20公分.................................................49 4.5關節受力....................................................50 4.5.1 10公分.................................................50 4.5.2 20公分.................................................51 4.6關節力矩....................................................52 4.6.1 10公分.................................................52 4.6.2 20公分.................................................54 4.7 肘關節角度比較.............................................55 第五章 討論與結論..............................................56 5.1討論........................................................56 5.2結論........................................................58 參考文獻.......................................................60

    1. Cooper C., Campion G., Melton L.J.d., Hip fractures in the elderly: a world-wide projection. Osteoporosis International 1992; 2(6): 285-9.
    2. Schneider E.L., Guralnik J.M., The aging of America. Impact on health care costs. Jama 1990; 263(17): 2335-40.
    3. Melton L.J.III, Epidemiology of fractures, in Osteoporosis: Etiology, Diagnosis, and Management, B.L. Riggs, Melton, L.J. III, Editor. 1988, Raven Press: New York. p. 111-131.
    4. Melton L.J., Chao E.Y.S., Lane j., Biomechanical aspects of fractures. In: Riggs B.L., Melton L.J. (Eds).Osteoporosis: Etiology, Diagnosis, and Management. Raven Press. New York, 1988,111-131.
    5. Rockwood C.A., Jr., WILKENS K.E., King R.E., Fractures in Children. J.B. Lippencott, Philadephia, P.A, 1984.
    6. Inkelis S.H., Stroberg A.J., Keller E.L., Christenson PD. Roller skating injuries in children. Pediatric Emergency Care 1988; 4(2): 127-32.
    7. Iskrant A.P., Joliet P.V., Accidents and Homicide. Harvard University Press, Cambridge. 1968.
    8. Hsiao E.T., Robinovitch S.N., Common protective movements govern unexpected falls from standing height. Journal of Biomechanics 1998; 31(1): 1-9.
    9. Amis A.A., Miller J.H., The mechanisms of elbow fractures: an investigation using impact tests in vitro. Injury 1995; 26(3): 163-8.
    10. Carlsoo S., Johansson O., Stabilization of, and load on, the elbow joint in some protective movements. Acta Anat 1962, 48-224.
    11. Chiu J., Robinovitch S.N., Prediction of upper extremity impact forces during falls on the outstretched hand. Journal of Biomechanics 1998; 31(12): 1169-76.
    12. Chou P.H., Chou Y.L., Lin C.J., Su F.C., Lou S.Z., Lin C.F., Huang G.F., The Biomechanical Analysis of Impact Forces of Upper Extremity on a Fall. Clinical Biomechanics 2001,888-894
    13. Chou P.H., Chou Y.L., Lin C.J., Su F.C., Lou S.Z., Lin C.F., Huang G.F., Effect of elbow flexion on impact forces of upper extremity on a fall. Clinical Biomechanics 2001,16:888-894
    14. Chou P.H., Chen S.K., Chou Y.L., Su F.C., Shi Y.C., Huang G.F., Wu T.C., Biomechanical Analyses for the Effects of Elbow Initial Flexion Angles on Upper Extremity during A Fall. Biomedical Engineering- Application, Basis&Communications 2002, 14(1):40-46
    15. Dempster W.T., Space requirements of the seated operator, in OH : Wright-Patterson Air Force Base. 1955, Dayton. 55-159.
    16. Leva Pd., Joint center longitudinal positions computed from a selected subset of Chandler's data. Journal of Biomechanics 1996; 29: 1231-1233.
    17. Woltring H.J., A FORTRAN package for generalized, cross-validatory spline smoothing and differentiation. Advanced Engineering Software 1986; (8): 104-13.
    18. Morrey B.F., An K.N., Storronont T.J., Force transmission through the radial head. Journal of Bone and Joint Surgery 1988; 70A: 250-56.

    下載圖示 校內:2004-07-24公開
    校外:2004-07-24公開
    QR CODE