簡易檢索 / 詳目顯示

研究生: 賴婉婷
Lai, Wan-Ting
論文名稱: 全固態錫電池顯微組織特性與充放電機制研究
A Study on Microstructure and Charge-Discharge Mechanism of Solid-State Tin Batteries
指導教授: 洪飛義
Hung, Fei-Yi
呂傳盛
Lui, Truan-Sheng
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 90
中文關鍵詞: 錫電池錫鎂合金錫銅合金充放電固態電解質
外文關鍵詞: Tin battery, Sn-Mg alloy, Sn-Cu alloy, Charge and discharge, Solid electrolyte
相關次數: 點閱:52下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 現今市面上商用主流儲能裝置為鋰離子電池,由於鋰礦枯竭導致電池成本高漲不下、鋰離子電池爆炸事件頻繁發生,以及電解液對人體、環境造成危害等缺點,選擇環保無毒的固態電解質成為目前儲能工業發展的目標,除了可以有效提升電池安全性以及熱穩定性之外,在電極材料選擇上亦更加寬廣。此外,隨著電動汽、機車產業蓬勃發展,高電容量之儲能系統需求日益提升,使目前商用主流之碳系電極材料發展受到阻礙,因此,較高體積能量密度之金屬合金電極材料前景備受關注。基於上述問題點,本研究以無毒且價格低廉的矽酸鎂鹽作為固態電解質材料,在室溫下因其 (001)晶面之層間結晶水可以幫助陽離子進行傳遞形成離子通道,克服傳統固態電解質於室溫下離子傳導率不佳之問題。
    為建構全固態錫電池,本研究首先以純錫負極檢討目前商用電池之石墨電極,確立固態錫碳電池發展潛力後,以錫作為電極材料基底,透過第二相鎂、銅添加形成錫基合金材料,分別以Sn-Cu及Sn-Mg合金作為電池正、負極材料,探討金屬間化合物對固態電池性能影響。實驗結果顯示,Sn-Mg合金中Mg2Sn能有效改善純錫在反覆充放電反應過後,因離子嵌入脫出所造成結構扭曲現象,避免離子濃度累積阻塞於電極表面,進而提升電池電容量。在Sn-Cu合金材料方面,以熱蒸鍍方式將純錫以及錫銅合金沉積於銅箔上,透過適當熱處理增加薄膜附著性藉此形成錫銅間金屬化合物 (Intermetallic compound,IMC),爾後進一步確認,蒸鍍錫銅薄膜擁有較佳電池充放電循環表現,此歸功於金屬間化合物Cu6Sn5,其於固態電池中除了可以有效增加電容量,亦能減少電極材料表面因體積膨脹產生的裂痕,進而提升全固態錫電池之電容量維持率。
    在完成全固態錫電池組建後,進一步將其進行溫度效應測試,實驗結果顯示,全固態錫電池於常溫25°C與低溫 -15°C下擁有良好電池表現,高溫55°C下雖然會使電容量提升,但經過10循環後便衰退至無法應用,因為當離子移動速度增加,起初雖會促使大量離子嵌入電極,但當電極結構不堪負荷,造成離子濃度累積於離子通道時,會導致沉積物生成,進而阻礙離子傳遞,使離子嵌入異常晶格位置,形成不可逆之嵌入反應,造成電容量下降。
    本研究採用Sn-Cu及Sn-Mg之錫基合金材料作為電池正、負極,搭配矽酸鎂鹽為固態電解質,成功建構全固態錫電池。在非鋰系電池中,除了具有高安全性以及環保無毒以外,亦展現良好的電容量與穩定性,研究成果可供儲能業界參考。

    Nowadays the main energy storage devices are lithium-ion batteries. Due to the depletion of lithium mines, the cost of batteries became higher, and lithium-ion battery explosions have occurred frequently. The solid electrolyte has become the goal of the current energy storage industry. In addition, the increasing demand for high-capacity energy storage systems has hit the development of current carbon-based materials. Therefore, the prospect of metal alloy electrode materials with high capacity attract extensive attention. Based on the above viewpoints, this study uses low-cost magnesium silicate ore as solid electrolyte. The layer water between the (001) crystallographic plane can help cations to overcome the problem of poor ion conductivity at room temperature.
    We first reviewed the graphite of current batteries with Sn anodes. After establishing the development potential of solid-state Sn-C batteries, we used tin-based alloy materials Sn-Cu and Sn-Mg as the cathode and anode materials of the battery respectively. The results showed that Mg2Sn in Sn-Mg alloy can effectively improve the distortion of the structure caused by the insertion and extraction after the repeated tests. In terms of cathode materials, we deposited Sn and Sn-Cu alloy on the copper foil by thermal evaporation respectively, the results showed that the Sn-Cu film has better battery performance, which is attributed to the Cu6Sn5. It can effectively increase the capacity in solid-state batteries, and also reduce the cracks due to Sn volume expansion.
    After the establishment of the all-solid-state tin battery, the temperature effect test showed it has the best performance at room temperature. Although the capacity will be increased at high temperature, it declined quickly after 10 cycles. Because high ion conductivity will cause the formation of deposits in the ion channel.
    The all solid-state tin is non-toxic and environmental protection, it also has good capacity and cycle stability, the research results can be used for reference in the energy storage industry.

    中文摘要 I Abstract III 總目錄 XIII 表目錄 XVII 圖目錄 XVIII 第一章 前言 1 第二章 文獻回顧 3 2-1 二次電池工作原理與發展 3 2-1-1 鋰離子電池 3 2-1-2 鎂離子電池 4 2-1-3 鈉離子電池 6 2-1-4 錫離子電池 7 2-2 錫基電極材料 7 2-2-1 錫鎂合金 8 2-2-2 錫銅合金 9 2-3 電極製程 9 2-3-1 混漿塗佈製程 9 2-3-2 熱蒸鍍薄膜電極製程 10 2-3-3 濺鍍薄膜電極製程 10 2-3-4 軋延加工 11 2-4 電解質之發展 11 2-4-1 液態電解質 11 2-4-2 固態電解質 12 2-4-3 矽酸鎂鹽 14 2-5 高低溫充放電機制 15 2-6 研究目的 15 第三章 實驗步驟與方法 21 3-1 實驗流程概述 21 3-2 實驗電極製備 21 3-2-1 熔煉電極製備 21 3-2-2 混漿塗佈電極製備 22 3-2-3 熱蒸鍍電極製備 22 3-3 電極材料微觀組織分析 23 3-3-1 低掠角X-ray繞射分析 23 3-3-2 掃描式電子顯微鏡與EDS分析 23 3-4 電池組裝 24 3-5 電化學特性分析 24 3-5-1 充放電測試 24 3-5-2 傅立葉轉換紅外線光譜分析 24 第四章 結果與討論 30 4-1 固態錫碳電池定電壓充放電性能探討 30 4-1-1 碳電極組織與相結構分析 30 4-1-2 錫碳電池充放電特性 30 4-1-3 碳電極充放電前後表面形貌分析 31 4-2 熱蒸鍍純錫薄膜電極材料性質探討 32 4-2-1 不同熱處理時間之熱蒸鍍純錫電極充放電特性影響 33 4-2-2 熱蒸鍍純錫薄膜電極充放電前後表面形貌分析 34 4-3 錫鎂合金箔電極材料性質探討 35 4-3-1 錫鎂電極組成與X-ray繞射分析 35 4-3-2 錫鎂電極充放電特性 36 4-4 熱蒸鍍錫銅合金電極材料性能探討 37 4-4-1 不同熱處理時間之熱蒸鍍錫銅薄膜電極充放電特性 38 4-4-2 熱蒸鍍錫銅薄膜電極X-ray繞射分析 39 4-4-3 熱蒸鍍錫銅薄膜電極顯微結構分析 39 4-5 固態錫電池充放電之溫度效應 41 4-5-1 不同溫度之固態錫電池充放電特性 41 4-5-2 不同溫度之固態電解質FTIR光學結構分析 42 4-5-3 不同溫度之固態電解質充放電後表面形貌差異 43 4-6 全固態錫電池綜合討論 44 第五章 結論 84 參考文獻 86  

    1. Xu, Kang, (2004), Nonaqueous liquid electrolytes for lithium-based rechargeable batteries, Chemical reviews, 104.10, 4303-4418.
    2. Ryu, H. S., Ahn, H. J., Kim, K. W., Ahn, J. H., Cho, K. K., and Nam, T. H, Self-discharge characteristics of lithium/sulfur batteries using TEGDME liquid electrolyte, (2006), Electrochimica acta, 52.4, 1563-1566.
    3. Wang, C., Zhang, X. W., Appleby, A. J., Chen, X., and F. E, (2002), Self-discharge of secondary lithium-ion graphite anodes, Journal of power sources, 112.1, 98-104.
    4. J. O. Besenhard, and H. P. Fritz. (1974), Cathodic reduction of graphite in organic solutions of alkali and NR4+ salts, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 53(2), 329-333.
    5. Park, Gumjae, Gunawardhana, N, Nakamura, H., Lee, Y. S., and Yoshio, M, (2012), The study of electrochemical properties and lithium deposition of graphite at low temperature, Journal of power sources, 199, 293-299.
    6. Tarascon, J. M., and Armand, M, (2011), Issues and challenges facing rechargeable lithium batteries, In: Materials for sustainable energy: a collection of peer-reviewed research and review articles from Nature Publishing Group, 171-179.
    7. Nguyen, D. T., and Song, S. W, (2017), Magnesium stannide as a high-capacity anode for magnesium-ion batteries, Journal of Power Sources, 368, 11-17.
    8. Wang, N. G., Wang, R. C., Peng, C. Q., Hu, C. W., Yan, F. E. N. G., and Bing, P. E. N. G, (2014), Research progress of magnesium anodes and their applications in chemical power sources. Transactions of Nonferrous Metals Society of China, 24(8), 2427-2439.
    9. Jiangfeng, N., Henghui, Z., Jitao, C. H. E. N., and Guangyao, S, (2004), Progress in solid electrolyte interface in lithium ion batteries. Progress in chemistry-beijing, 16(3), 335-342.
    10. Gao, T., Hou, S., Huynh, K., Wang, F., Eidson, N., Fan, X., and Wang, C, (2018), Existence of solid electrolyte interphase in Mg batteries: Mg/S chemistry as an example, ACS applied materials & interfaces, 10(17), 14767-14776.
    11. Sa, N., Pan, B., Saha-Shah, A., Hubaud, A. A., Vaughey, J. T., Baker, L. A., and Burrell, A. K, (2016), Role of chloride for a simple, non-Grignard Mg electrolyte in ether-based solvents, ACS applied materials & interfaces, 8(25), 16002-16008.
    12. Aurbach, D., Lu, Z., Schechter, A., Gofer, Y., Gizbar, H., Turgeman, R., and Levi, E, (2000), Prototype systems for rechargeable magnesium batteries. Nature, 407(6805), 724-727.
    13. Q. Y. Li, Q. C. Pan, G. H. Yang, X. L. Lin, Z. X. Yan, H. Q. Wang, and Y. G. Huang, (2000), Facile synthesis of a novel Al-based composite as an anode for lithium-ion batteries, RSC Advances, 5(104), 85338-85343.
    14. Son, S. B., Gao, T., Harvey, S. P., Steirer, K. X., Stokes, A., Norman, A., and Ban, C, (2018), An artificial interphase enables reversible magnesium chemistry in carbonate electrolytes, Nature chemistry, 10(5), 532.
    15. Du, A., Zhang, H., Zhang, Z., Zhao, J., Cui, Z., Zhao, Y., and Cui, G, (2019), A Crosslinked Polytetrahydrofuran‐Borate‐Based Polymer Electrolyte Enabling Wide‐Working‐Temperature‐Range Rechargeable Magnesium Batteries, Advanced Materials, 31(11), 1805930.
    16. 李健豪,環保型鈉離子電池材料特性與充放電機制研究,國立成功大學材料科學及工程學系,碩士論文,民國108年。
    17.Singh, N., Arthur, T. S., Ling, C., Matsui, M., and Mizuno, F, (2013), A high energy-density tin anode for rechargeable magnesium-ion batteries, Chemical communications, 49(2), 149-151.
    18. Slater, M. D., Kim, D., Lee, E., and Johnson, C. S, (2013), Sodium‐ion batteries, Advanced Functional Materials, 23(8), 947-958.
    19. Palacin, M. R, (2009), Recent advances in rechargeable battery materials: a chemist’s perspective, Chemical Society Reviews, 38(9), 2565-2575.
    20. J. M. Yan, H. Z. Huang, J. Zhang, and Y. Yang, (2008), The study of Mg2Si/carbon composites as anode materials for lithium ion batteries, Journal of Power Sources, 175(1), 547-552.
    21. C. Wang, A. John Appleby, and F. Little, (2001), Electrochemical Study on Nano-Sn, Li4.4Sn and AlSi0.1 Powders Used as Secondary Lithium Battery Anodes, Journal of power sources, 93(1-2), 174-185.
    22. Amadei, I., Panero, S., Scrosati, B., Cocco, G., and Schiffini, L, (2005), The Ni¬3Sn4 intermetallic as a novel electrode in lithium cells, Journal of power sources, 143(1-2), 227-230.
    23. Kim, Y. L., Lee, H. Y., Jang, S. W., Lee, S. J., Baik, H. K., Yoon, Y. S., and Lee, S. M, (2003), Nanostructured Ni3Sn2 thin film as anodes for thin film rechargeable lithium batteries, Solid State Ionics, 160(3-4), 235-240.
    24. Yang, J., Takeda, Y., Imanishi, N., Xie, J. Y., and Yamamoto, O, (2000), Intermetallic SnSbx compounds for lithium insertion hosts, Solid State Ionics, 133(3-4), 189-194.
    25. Fang, D., Cheng, X., Li, Y., and Sun, Z, (2016), Microstructure and thermal characteristics of Mg–Sn alloys as phase change materials for thermal energy storage, RSC advances, 6(98), 96327-96333.
    26. Roberts, G. A., Cairns, E. J., and Reimer, J. A, (2003), An electrochemical and XRD study of lithium insertion into mechanically alloyed magnesium stannide, Journal of The Electrochemical Society, 150(7), A912-A916.
    27. H. Kim, B. Park, H. J. Sohn, and T. Kang, (2000), Electrochemical characteristics of Mg-Ni alloys as anode materials for secondary Li batteries, Journal of Power Sources, 90(1), 59-63.
    28. C. M. Park and H. J. Sohn, (2009), A mechano- and electrochemically controlled SnSb/C nanocomposite for rechargeable Li-ion batteries, Electrochimica acta, 54(26), 6367-6373.
    29. Wang, S., Zhao, W., Wang, Y., Liu, X., and Li, L, (2013), Characteristic performance of SnO/Sn/Cu6Sn5 three-layer anode for Li-ion battery, Electrochimica Acta, 109, 46-51.
    30. Kepler, K. D., Vaughey, J. T., and Thackeray, M. M, (1999), Copper–tin anodes for rechargeable lithium batteries: an example of the matrix effect in an intermetallic system, Journal of Power Sources, 81, 383-387.
    31. S. Nohara, N. Fujita, S. G. Zhang, H. Inoue, and C. Iwakura, (1998), Electrochemical characteristics of a homogeneous amorphous alloy prepared by ball-milling Mg2Ni with Ni, Journal of Alloys and Compounds, 267(1-2), 76-78.
    32. K. L. Lee, J. Y. Jung, S. W. Lee, H. S. Moon, and J. W. Park, (2004), Electrochemical characteristics of α-Si thin film anode for Li-ion rechargeable batteries, Journal of Power Sources, 129(2), 270-274.
    33. M. R. Lukatskaya, O. Mashtalir, C. E. Ren, Y. Dall’Agnese, P. Rozier, P. L. Taberna, M. Naguib, P. Simon, M. W. Barsoum, and Y. Gogotsi, (2013), Cation Intercalation and High Volumetric Capacitance of Two-Dimensional Titanium Carbide, Science, 341(6153), 1502.
    34. C. Zhang, W. Lv, Y. Tao, and Q-H. Yang, (2015), Towards superior volumetric performance: design and preparation of novel carbon materials for energy storage, Energy & Environmental Science, 8(5), 1390-1403.
    35. Choi, J. W., Kim, J. K., Cheruvally, G., Ahn, J. H., Ahn, H. J., and Kim, K. W, (2007), Rechargeable lithium/sulfur battery with suitable mixed liquid electrolytes, Electrochimica Acta, 52(5), 2075-2082.
    36. Yang, H., Zhuang, G. V., and Ross Jr, P. N, (2006), Thermal stability of LiPF6 salt and Li-ion battery electrolytes containing LiPF6, Journal of Power Sources, 161(1), 573-579.
    37. Balbuena, P. B., and Wang, Y, (2004), Lithium-ion batteries: solid-electrolyte interphase, Imperial college press, 140-190.
    38. Gray, F. M., and Gray, F. M, (1991), Solid polymer electrolytes: fundamentals and technological applications, New York: VCH, 83-93.
    39. Gorecki, W., Jeannin, M., Belorizky, E., Roux, C., and Armand, M, (1995), Physical properties of solid polymer electrolyte PEO (LiTFSI) complexes, Journal of Physics: Condensed Matter, 7(34), 6823.
    40. Armand, M, (1994), The history of polymer electrolytes, Solid State Ionics, 69(3-4), 309-319.
    41. Sun, S., Ni, M., Zan, F., Xia, Q., Xu, J., Yue, J., and Xia, H, (2019), Research Progress on Amorphous Inorganic Solid Electrolytes, Journal of the Chinese Ceramic Society, 10, 4.
    42. Sumner, M. E., and Miller, W. P, (1996), Cation exchange capacity and exchange coefficients, Methods of Soil Analysis: Part 3 Chemical Methods, 5, 1201-1229.
    43. 許朝政,固態鎂基鹽質離子導體材料特性與充放電機制研究,國立成功大學材料科學及工程學系,碩士論文,民國107年。
    44. M. S. Balogun, W. T. Qiu, F. Y. Lyu, Y. Luo, H. Meng, J. T. Li, W. J. Mai, L. Q. Mai, and Y. X. Tong, (2016), All-flexible lithium ion battery based on thermally-etched porous carbon cloth anode and cathode, Nano Energy, 26, 446-455.
    45. H. Chen, X. Hou, F. Chen, S. Wang, B. Wu, Q. Ru, H. Qin, and Y. Xia, (2018), Milled flake graphite/plasma nano-silicon@carbon composite with void sandwich structure for high performance as lithium ion battery anode at high temperature, Carbon, 130, 433-440.
    46. Chauque, S., Braga, A. H., Gonçalves, R. V., Rossi, L. M., and Torresi, R. M, (2020), Enhanced energy storage of Fe3O4 nanoparticles embedded in N‐doped graphene, ChemElectroChem, 7-9.
    47. Tu, K. N, (2007), Solder joint technology, New York: Springer, 117, 237.
    48. Zhirong, L., Uddin, M. A., and Zhanxue, S, (2011), FT-IR and XRD analysis of natural Na-bentonite and Cu (II)-loaded Na-bentonite, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 79(5), 1013-1016.

    下載圖示 校內:2025-07-01公開
    校外:2025-07-01公開
    QR CODE