| 研究生: |
王耀鋐 Wang, Yao-Hong |
|---|---|
| 論文名稱: |
COMSOL之凝固與熱傳問題分析 Analysis of Solidification and Heat Transfer Problems with COMSOL |
| 指導教授: |
趙隆山
Chao, Long-Sun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
| 論文出版年: | 2012 |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 60 |
| 中文關鍵詞: | COMSOL Multiphysics 、熱傳學 、凝固 |
| 外文關鍵詞: | COMSOL Multiphysics, Heat Transfer, Solidification |
| 相關次數: | 點閱:87 下載:7 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文利用COMSOL Multiphysics分析非線性的凝固相變化問題、自然對流問題、對流凝固問題以及平板加熱器之均溫性分析問題。比較套裝軟體COMSOL Multiphysics對於非線性問題與不連續界面以及應用於實務設計時,其計算的精確度。本文先以具有解析解的相變化問題如史蒂芬問題、Rathjen問題來作分析比較。再針對溫度與流場耦合的自然對流與凝固對流問題,使用COMSOL進行熱流耦合運算,並分析其計算結果。最後進行實務設計的平板加熱器之均溫性分析,經由前次設計之實驗數據來反推其設計參數,進而對現有的加熱器進行改良。分析後發現,COMSOL在實務設計上求解相當便利,對於耦合問題上面亦具有優異的求解能力,但對於非線性的液固界面追蹤誤差較大。
Abstract
This study is to use the software package COMSOL Multiphysics to analyze the nonlinear solidification or phase-change problems, the natural convection problems, the coupling of convection and solidification problems and the thermal problems in the designed Susceptor. The accuracy of COMSOL for solving nonlinear and discontinuous interface problems and that of the practical design problem are compared and analyzed. First, the Stefan and Rathjen solidification problems with exact solutions are investigated by using COMSOL. Furthermore, COMSOL is employed to study the natural convection problems and the convection and solidification problems in which the temperature and flow fields are coupled with each other. Finally, COMSOL is applied to the heater design of a Susceptor for obtaining the uniform temperature distribution. Inverse calculation is utilized to acquire the design parameters from the experimental data of the previously designed Susceptor. The heater design is modified by the COMSOL analysis. From the analysis results, it can be found that COMSOL works very well for the heater design of the Susceptor and for solving the coupling problems. However, the location prediction of the solid/liquid interface of a solidified problem is not very accurate.
[1] Heubner and Thomton, The Finite Element Method, 3rd ed., McGraw –Hill, New York, 1977.
[2] P. K. Banerjee, R. Butterfield, Boundary element methods in engineering science, McGraw-Hill (1981).
[3] Belytschko T., Krongauz Y., Organ D., et al. Smoothing and acclerated computions in the element free Galerkin method, J. Comput. Appl. Math, 74(1996) 111-126.
[4] COMSOL MULTIPHYSICS, User’s Guide, Version3.5a.
[5] J. N. Reddy, Introduction to the Finite Element Method, Science Typographers, 1984.
[6] Carslaw H. S., Jaeger J. C., Conduction of Heat in Solids, Oxford University Press, Oxford, 1959.
[7] Stefan J., Uber die Theorie der Eisbildung, insbesondere uber die Eisbildung in Polarmaere, Annalen der Physik and Chemie 42(1891) 269-286.
[8] Rathjen K. A., Jiji L. M., Heat conduction with melting or freezing in a corner. Journal of Heat Transfer-Transactions of the ASME 93(1971) 101-109.
[9] Unger, Lyle H., Brown, Robert A., Cellular interface morphologies in directional solidification IV. The formation of deep cells, The American Physical Society, 31(1985) 5931-5939.
[10] Takaki Tomohiro., Fukuoka Toshimichi., Tomita Yoshihiro., Pahse-field simulation during directional solidification of a binary alloy using adaptive finite element method. Journal of Crystal Growth, 283(2005) 263-278 .
[11] Crank J. Free and Moving Boundary Problem. Oxford Uni. Press, Oxford, 1984.
[12] Nigro N., Huespe A., Fachinotti V., Phasewise numerical integration of finite element method applied to solidification process, International Journal of Heat and Mass Transfer, 43(2000) 1053-1066.
[13] Felicelli S. D., Heinrich J C., Poirier D. R., Three-dimensional simulations of freckles in binary alloys, Journal of Crystal Growth, 191 879-888, 1998.
[14] Yoo J., Rubinsky B., A finite element method for the study of solidification process in the presence of natural convection, International Journal for Numerical Methods in Engineering 23(1986) 1985-1805.
[15] Nasch P. M., Steinemann S. G., Density and thermal expansion of molten manganese, iron, nickel, copper, aluminum and tin by means of the gamma-ray attenuation technique, Physics and Chemistry of Liquids 29(1995) 43-58.
[16] Chen Y., Im Y. T., Yoo J., Finite element analysis of solidification of aluminum with natural convection, Journal of Materials Processing Technology 52(1995) 592-609.
[17] 彭勳章,“以修正結尾誤差為基礎之可變時間步伐控制策略建立從澆鑄到凝固鑄造過程之數值模式研究”,國立成功大學工程科學系研究所博士論文,2010
[18] Lee J., Mok J. and Hong C. P., Straightforward numerical analysis of casting process in a rectangular mold : from filling to solidification , ISIJ international 39(1999) 1252-1261.
[19] Chalmers B., “Principles of solidification” Wiley, New York, 1964.
[20] COMSOL MULTIPHYSICS, Modeling Guide, Version3.5a.