簡易檢索 / 詳目顯示

研究生: 蔡聖德
Tsai, Sheng-Te
論文名稱: 數值模式ROMS應用於高屏海底峽谷異重流之研究
A numerical investigation on hyperpycnal river flow in Gaoping Submarine Canyon using ROMS
指導教授: 陳佳琳
Chen, Jia-Lin
學位類別: 碩士
Master
系所名稱: 工學院 - 水利及海洋工程學系
Department of Hydraulic & Ocean Engineering
論文出版年: 2021
畢業學年度: 110
語文別: 中文
論文頁數: 94
中文關鍵詞: 低濃度異重流山溪流型河流海底峽谷泥沙傳輸
外文關鍵詞: hyperpycnal flow, small mountainous river, submarine canyon, typhoon, submarine cable break
相關次數: 點閱:80下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著台灣經濟社會的發展及通訊需求日益增加,一旦海底電纜斷裂,預期會造成難以估計的損失。一般推斷造成海底電纜斷裂因素有兩個:(1)海底崩塌 (2)異重流(hyperpycnal flow)。前者通常與隨機的地震事件有關,後者與高流量所攜帶泥沙濃度有關。本研究利用河川數值模式HEC-RAS以及中尺度海洋數值模式ROMS,基於現地觀測之河川斷面地形、流量歷線、懸沙濃度、海域底質、潮汐及垂向溫鹽分布,進行模式架設以及結果分析說明高屏溪及海底峽谷可產生低濃度異重流,而在峽谷溫鹽場不受前場洪水事件影響下,密度差福祿數大於1,因此流速及海域環境內密度為異重流的形成關鍵,此時最低所需的濃度僅為20g/L,流量約為2970cms,而異重流發生時多為退平潮時刻。另外透過局部理查遜數反應出峽谷內受潮汐作用產生之速度會造成剪力不穩定的現象,漲潮時期潮汐方向與異重流方向相同,局部理查遜數較低,剪力不穩定現象造成泥沙再懸浮的作用較明顯。退潮時刻泥沙有部分淤積在大陸棚兩側,此淤積與泥沙水團在河口及峽谷源頭交接處受潮流影響而被帶往峽谷南北兩側有關,而在峽谷源頭處的大量淤積,則是因為退潮時期峽谷流速為朝向河口;但在高流量時期,無論漲潮或退潮時刻,峽谷內異重流速度均是朝向外海方向,泥沙在大陸棚上的淤積都相當的少,河源的泥沙受異重流影響可被傳輸至更深海處。

    Hyperpycnal flow induced by large-scale catastrophic events (earthquakes and typhoons) may cause various potential environmental hazards such as submarine and seafloor equipment damages. Approximately 150 to 200 fiber-optic cable break events are recorded each year in the area between the Gaoping Submarine Canyon (GPSC) and the Manila Trench. However, how hyperpycnal flow was triggered by catastrophic events is not well understood. This study aimed to reproduce the flow field and sediment transport processes of hyperpycnal flow of the 2008-flood events during Typhoons Kalmaegi and Typhoon Phoenix using numerical models. The model results showed that the riverine flow was affected by the tidal currents and descended to the submarine canyon. In the submarine canyon, the hyperpycnal flow was enhanced during flood tides and attenuated during ebb tides. The river discharge and SSC required for the occurrence of hyperpycnal flow were approximately 2000~3000 cms and 20 g/L. The density Froude number exceeds the critical value of 0.8, but the concentration is much lower than the critical concentration for the occurrence of the hyperpycnal flow.

    摘要 I Extended Abstract II 謝誌 IX 目錄 XI 圖目錄 XIV 表目錄 XVI 第一章 研究動機與研究目的 1 1.1 研究動機 1 1.2 研究目的 1 第二章 文獻探討 2 2.1 異重流 2 2.1.1 異重流發生的臨界值 2 2.1.2 異重流的潛入現象 3 2.1.3 異重流的形態 4 2.2 高屏河口水動力 5 第三章 研究區域 8 3.1 集水區之地勢與土壤 8 3.2 高屏溪特性與泥沙產量 9 3.3 高屏海域特性 11 第四章 研究方法 12 4.1 HEC-RAS模式介紹 14 4.2 HEC-RAS模式設定 14 4.3 ROMS模式介紹與假設 15 4.4 ROMS模式設定 16 4.4.1 場域設定 16 4.4.2 底床剪應力的設定 20 4.4.3 泥沙相關參數的設定 21 4.4.4 溫鹽場及密度設定 24 4.4.5 河川入流邊界溫度與鹽度設定 26 4.4.6 河川入流邊界輸沙濃度及粒徑設定 26 4.4.7 潮汐邊界設定 29 第五章 模式率定 30 5.1 HEC-RAS模式水位率定 30 5.2 ROMS模式水位率定 31 5.3 ROMS模式流速合理性 32 第六章 結果分析 35 6.1 從河口至峽谷的泥沙運行過程 35 6.2 峽谷內的溫鹽及泥沙特性 43 6.3 異重流的臨界值 51 6.3.1 密度差福祿數 51 6.3.2 局部理查遜數 55 6.4 底床沉積趨勢 59 第七章 結論與建議 60 7.1 結論 60 7.2 建議 61 參考資料 62 附錄一 泥沙分布分析 67 附錄二 底床載輸沙計算 69 1. Van Rijn 輸沙公式: [參考Van Rijn(1993)] 69 2. 吳偉明輸沙公式: [參考 詹錢登(2018)] 72 3. 楊志達輸沙公式: [參考 詹錢登(2018)] 74 4. Ackers White 輸沙公式: [參考Van Rijn(1993)] 75 5. Engelund and Hansen 輸沙公式: [參考Van Rijn(1993)] 76 附錄三 溫鹽場隨時間之變化 77 附錄四 潮汐與異重流臨界關係 79 附錄五 參數列表 85 附錄六 底床剪應力分析 88 附錄七 底床剪應力敏感度分析 92 附錄八 粗糙長度敏感度分析 93

    1. Ackers, P. (1990), Sediment transport: the Ackers and White theory revised, Report No. SR, 237.
    2. Bates, C. C. (1953), Rational theory of delta formation, Aapg Bulletin, 37(9), 2119-2162.
    3. Bagnold, R. (1963), Mechanics of marine sedimentation, The sea, 3, 507-528.
    4. Beckmann, A., and D. B. Haidvogel (1993), Numerical simulation of flow around a tall isolated seamount. Part I: Problem formulation and model accuracy, Journal of physical oceanography, 23(8), 1736-1753.
    5. Chapman, D. C. (1985), Numerical treatment of cross-shelf open boundaries in a barotropic coastal ocean model, Journal of Physical Oceanography, 15(8), 1060-1075.
    6. Chen, S. N., W. R. Geyer, and T. J. Hsu (2013), A numerical investigation of the dynamics and structure of hyperpycnal river plumes on sloping continental shelves, Journal of Geophysical Research: Oceans, 118(5), 2702-2718.
    7. Cheng, N.-S. (1997), Simplified settling velocity formula for sediment particle, Journal of hydraulic engineering, 123(2), 149-152.
    8. Chang, C. H., J. F. Harrison, and Y. C. Huang (2015), Modeling Typhoon‐Induced Alterations on River Sediment Transport and Turbidity Based on Dynamic Landslide Inventories: Gaoping River Basin, Taiwan, Water, 7(12), 6910-6930.
    9. Chiou, M. D., S. Jan, J. Wang, R. C. Lien, and H. Chien (2011), Sources of baroclinic tidal energy in the Gaoping Submarine Canyon off southwestern Taiwan, Journal of Geophysical Research: Oceans, 116(C12)
    10. Committee, U. I. (1957), Some fundamentals of particle size analysis, a study of methods used in measurement and analysis of sediment loads in stream. Subcommittee on Sedimentation. Interagency Committee on Water Resources, St. Anthony Falls Hydraulic Laboratory Minneapolis, Report(12).
    11. Egbert, G. D., and S. Y. Erofeeva (2002), Efficient inverse modeling of barotropic ocean tides, Journal of Atmospheric and Oceanic Technology, 19(2), 183-204.
    12. Einstein, H. A. (1950), The bed-load function for sediment transportation in open channel flows, US Government Printing Office.
    13. Engelund, F., and E. Hansen (1967), A monograph on sediment transport in alluvial streams, Technical University of Denmark 0stervoldgade 10, Copenhagen K.
    14. Flather, R., and F. RA (1976), A tidal model of the north-west European continental shelf.
    15. Gavey, R., L. Carter, J. T. Liu, P. J. Talling, R. Hsu, E. Pope, and G. Evans (2017), Frequent sediment density flows during 2006 to 2015, triggered by competing seismic and weather events: Observations from subsea cable breaks off southern Taiwan, Marine Geology, 384, 147-158.
    16. Govinda Rao, N., & Muralidhar, D. (1963). Discharge characteristics of weirs of finite-crest width. La Houille Blanche, 49(5), 537-545
    17. Hagy, J. D., W. R. Boynton, and L. P. Sanford (2000), Estimation of net physical transport and hydraulic residence times for a coastal plain estuary using box models, Estuaries, 23(3), 328-340.
    18. Haney, R. L. (1991). On the pressure gradient force over steep topography in sigma coordinate ocean models. Journal of physical oceanography, 21(4), 610-619.
    19. Jiahua, F. (1986), Turbid density currents in reservoirs, Water International, 11(3), 107-116
    20. Lee, I.-H., Y.-H. Wang, J. T. Liu, W.-S. Chuang, and J. Xu (2009), Internal tidal currents in the Gaoping (Kaoping) submarine canyon, Journal of Marine Systems, 76(4), 397-404
    21. Liu, J. T., R. T. Hsu, J.-J. Hung, Y.-P. Chang, Y.-H. Wang, R. H. Rendle-Bühring, C.-L. Lee, C.-A. Huh, and R. J. Yang (2016), From the highest to the deepest: The Gaoping River–Gaoping Submarine Canyon dispersal system, Earth-Science Reviews, 153, 274-300.
    22. Liu, J. T., K.-j. Liu, and J. C. Huang (2002), The effect of a submarine canyon on the river sediment dispersal and inner shelf sediment movements in southern Taiwan, Marine Geology, 181(4), 357-386.
    23. Liu, J. T., Y. H. Wang, R. J. Yang, R. T. Hsu, S. J. Kao, H. L. Lin, and F. H. Kuo (2012), Cyclone‐induced hyperpycnal turbidity currents in a submarine canyon, Journal of Geophysical Research: Oceans, 117(C4).
    24. Mehta, A. J. (2013), An introduction to hydraulics of fine sediment transport, World Scientific Publishing Company.
    25. Meyer-Peter, E., and R. Müller (1948), Formulas for bed-load transport, paper presented at IAHSR 2nd meeting, Stockholm, appendix 2, IAHR.
    26. Mellor, G. L., T. Ezer, and L.-Y. Oey (1994), The pressure gradient conundrum of sigma coordinate ocean models, Journal of atmospheric and oceanic technology, 11(4), 1126-1134.
    27. Miller, M., I. McCave, and P. D. Komar (1977), Threshold of sediment motion under unidirectional currents, Sedimentology, 24(4), 507-527.
    28. Mulder, T., and J. P. Syvitski (1995), Turbidity currents generated at river mouths during exceptional discharges to the world oceans, The Journal of Geology, 103(3), 285-299.
    29. Olabarrieta, M., J. C. Warner, and N. Kumar (2011), Wave‐current interaction in Willapa Bay, Journal of Geophysical Research: Oceans, 116(C12).
    30. Raymond, W. H., and H. Kuo (1984), A radiation boundary condition for multi‐dimensional flows, Quarterly Journal of the Royal Meteorological Society, 110(464), 535-551.
    31. Saint-Venant, A.J.C. Barré de (1871), "Théorie du mouvement non permanent des eaux, avec application aux crues des rivières et a l'introduction de marées dans leurs lits", Comptes Rendus de l'Académie des Sciences, 73: 147–154 and 237–240
    32. Sequeiros, O. E., H. Naruse, N. Endo, M. H. Garcia, and G. Parker (2009), Experimental study on self‐accelerating turbidity currents, Journal of Geophysical Research: Oceans, 114(C5).
    33. Shchepetkin, A. F., and J. C. McWilliams (2005), The regional oceanic modeling system (ROMS): a split-explicit, free-surface, topography-following-coordinate oceanic model, Ocean modeling, 9(4), 347-404.
    34. Singh, B., and C. Shah (1971), Plunging phenomenon of density currents in reservoirs, La Houille Blanche(1), 59-64.
    35. Subramanya, K. (2009). Flow in open channels: Tata McGraw-Hill Education
    36. Van Rijn, L. C. (1993), Principles of sediment transport in rivers, estuaries and coastal seas.
    37. Wang, Y., I. Lee, and J. Liu (2008), Observation of internal tidal currents in the Kaoping Canyon off southwestern Taiwan, Estuarine, Coastal and Shelf Science, 80(1), 153-160.
    38. Wang, H., N. Bi, Y. Wang, Y. Saito, and Z. Yang (2010), Tide‐modulated hyperpycnal flows off the Huanghe (Yellow River) mouth, China, Earth Surface Processes and Landforms, 35(11), 1315-1329.
    39. Winterwerp, J. (2001), Stratification effects by cohesive and noncohesive sediment, Journal of Geophysical Research: Oceans, 106(C10), 22559-22574.
    40. Wu, W., S. S. Wang, and Y. Jia (2000), Nonuniform sediment transport in alluvial rivers, Journal of hydraulic research, 38(6), 427-434.
    41. Yalin, M. S. (1976), Mechanics of sediment transport [by] M. Selim Yalin.
    42. Yang, C. T. (1973), Incipient motion and sediment transport, Journal of the hydraulics division, 99(10), 1679-1704.
    43. Zavala, C., & Arcuri, M. (2016). Intrabasinal and extrabasinal turbidites: Origin and distinctive characteristics. Sedimentary Geology, 337, 36-54.
    44. 王君豪 (2007),「高屏溪口流場三維結構的觀測分析」,國立中山大學海洋物理研究所碩士論文,85頁
    45. 巨廷工程顧問(2006),「高屏溪(里港大橋至海口)整體河性檢討之研究委託技術服務測量成果報告書」,經濟部水利署第七河川局,183頁
    46. 成大水利海洋研究發展文教基金會(2009),「高雄海岸基本資料監測調查(鳳鼻頭至高屏溪口及興達港至二仁溪口)」,經濟部水利署第六河川局,520頁
    47. 沙玉清 (1996),「泥沙运动学引论(修订版)」,西安: 陕西省科学出版社,285頁
    48. 吳孟麟(2004),「高屏海底峽谷與陸棚流場之研究」,國立中山大學海洋物理研究所碩士論文,119頁
    49. 林育如 (2006),「高屏峽谷水團運動受地形水深之影響」,國立中山大學海洋物理研究所碩士論文,85頁
    50. 林之詠(2016),「臺灣海峽表層沉積物物理及地球化學特性的空間分布探討」,中山大學海洋科學系研究所學位論文,134頁
    51. 林鈺淇(2019),「高屏溪懸沙濃度觀測與高屏海底峽谷異重流數值模擬研究」,國立成功大學水利及海洋工程研究所學位論文,63頁
    52. 逢甲大學(2015),「高屏溪河口輸沙對臨近海岸之影響評估(2/2)」,經濟部水利署第七河川,241頁
    53. 黃俊傑 (2001),「從高屏峽谷水文之時空變化來探討懸浮物質傳輸的機制」,國立中山大學海洋物理研究所碩士論文,109頁
    54. 黃聖峰(2012),「高屏溪口小尺度沖淡水動力作用之硏究」,國立中山大學海洋物理研究所碩士論文,142頁
    55. 國立交通大學 (2008),「高屏堰整體加高對其上下游河段沖淤影響之研究」,經濟部水利署南區水資源局,145頁
    56. 詹錢登(2018),「泥沙運行學」,五南出版社,352頁
    57. 楊仁凱(2010),「沖淡水中粒徑結構之時空變化」,國立中山大學海洋物理研究所碩士論文,160頁
    58. 經濟部水利署水利規劃試驗所(2007),「高屏溪治理規劃檢討」,經濟部水利署水利規劃試驗所,450頁
    59. 賴進松(1999),「高屏溪河口感潮水理及鹽分入侵之研究」,曹公農業水利研究發展基金會,117頁
    60. 蘇政緯 (2015),「沉積物沉降速度對於高屏海底峽谷異重流結構影響」,臺灣大學海洋研究所學位論文,60頁

    無法下載圖示 校內:2027-01-19公開
    校外:2027-01-19公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE