| 研究生: |
鄭峯昇 Cheng, Feng-Sheng |
|---|---|
| 論文名稱: |
音射法於自癒性混凝土損傷評估與破壞模式之探討 Damage Detection and Characterization of Autogenous Healing Concrete by Acoustic Emission |
| 指導教授: |
侯琮欽
Hou, Tsung-Chin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 154 |
| 中文關鍵詞: | 音射 、破壞程度 、自癒性 、波形 |
| 外文關鍵詞: | acoustic emission, damage level, self-healing, waveform |
| 相關次數: | 點閱:98 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
音射(Acoustic Emission, AE)是一種由於材料受到外界刺激後,其內部能量快速釋放而產生的一種暫態應力波的現象,當音射訊號產生時,即代表材料內部有損壞發生,而本研究採用的檢測方法即為非破壞性檢測中的音射檢測法(Acoustic Emission Testing, AET)。藉由音射裝置監測無添加自癒性材料之一般水泥砂漿與含有自癒性材料之水泥砂漿,在單軸抗壓試驗加載且分別受到其試體不同比例的抗壓強度作用下之加載過程,並由監測得到之數據結果利用參數分析法及小波轉換分析的波形圖,進行此兩種類型試體在不同比例強度加載作用後的破壞程度評估,以及經逐次加載及養護後之微裂縫自癒修復程度比較。
由本研究的試驗結果得知,將破壞產生之裂縫破壞型式藉由參數分析法作分類並得出破壞型式分布圖,當其分布點的分布趨勢隨著破壞程度的提升而往分布圖中右下的剪力裂縫破壞區移動,則表示有較嚴重的破壞發生。其次,由音射波形的變化情形可以發現,當有越嚴重的破壞發生時,其訊號波形中的S波的作用時間會明顯地增長。最後,藉由各加載及養護階段的破壞程度及自癒程度的評估結果與相關之量化參數作探討與比較,以達到偵測混凝土其微裂縫自修補特性的目的。
Acoustic emission is a phenomenon due to the material subjected to external stimulation and its internal energy generated by a rapid release of transient stress wave. When the acoustic emission signal generating, it represents the damage within materials occurred. The detection method used in this study is Acoustic Emission Testing (AET) and that is one of non-destructive methods. By using acoustic emission device monitoring the loading process of without and with self-healing material of cement mortar, which loading in different ratio of its respective compressive strength during the uniaxial compression testing. The results which are analyzed by parameter method and the waveforms of wavelet transform demonstrate the damage level in different loading strength and the degree of self-healing in different curing stage of these two types of cement mortar. The crack types which incurred by the damage are categorized different damage types as the scatter diagram by parameter method, and the distribution trend of points in the diagram move to shear crack zone when the damage level increases. Secondly, according to the changes of acoustic emission wave indicate that the reaction time of S wave of the waveform significantly grow when the severe damage occurs. Finally, make the discussion and comparison by the results of the assessment for the degree of damage and self-healing in each stage of loading and curing and related AE parameters in order to detect the characteristics of self-healing of the micro-cracks in concrete.
[1] Grosse, C. U. (2008). Acoustic emission testing. Heidelberg: Springer.
[2] 林楨中、陳彥翰(2005),「營造工程音波監測防災監控技術研究: 混凝土音洩特性探討」,行政院勞工委員會勞工安全衛生研究所。
[3] Kaiser, J. (1950). An investigation into the occurrence of noises in tensile tests, or a study of acoustic phenomena in tensile tests. Ph. D. thesis, Tech. Hochsch. Munchen, Munich, Germany.
[4] Kaiser, J. (1953). Knowledge and research on noise measurements during the tensile stressing of metals. Archiv für das Eisenhüttenwesen, 24, 43-44.
[5] Schofield, B. H. (1963). Acoustic emission under applied stress. Lessells and associates inc, Waltham ma..
[6] Green, A. T. (1985). Necessity the mother of acoustic emission testing (1961-72). Materials Evaluation, 43(6), 600.
[7] Dunegan, H. L., & Green, A. T. (1972). Factors affecting acoustic emission response from materials. Acoustic Emission, ASTM STP, 505, 100-113.
[8] Fowler, T. J. (1986). Experience with acoustic emission monitoring of chemical Process industry vessels. Progress in AE III, 150-162.
[9] Hardy Jr, H. R. (1981). Applications of acoustic emission techniques to rock and rock structures: a state-of-the-art review. Acoustic Emission in Geotechnical Engineering Practice, ASTM STP, 750, 4-92.
[10] Drouillard, T. F. (1996). A history of acoustic emission. Journal of acoustic emission, 14(1), 1-34.
[11] Robinson, G. S. (1965). Methods of detecting the formation and propagation of microcracks in concrete. Proceedings of international conference on structure of concrete and its behavior under load, London, 131-145.
[12] Green, A. T. (1970). Stress wave emission and fracture of prestressed concrete reactor vessel materials. Proceeding 2nd Inter American Conference on Materials Technology, 635-649.
[13] Alliche, A., & Francois, D. (1986). Fatigue behavior of hardened cement paste. Cement and Concrete Research, 16(2), 199-206.
[14] Ohtsu, M., & Watanabe, H. (2001). Quantitative damage estimation of concrete by acoustic emission. Construction and Building Materials, 15(5), 217-224.
[15] Watanabe, T., Nishibata, S., Hashimoto, C., & Ohtsu, M. (2007). Compressive failure in concrete of recycled aggregate by acoustic emission. Construction and Building Materials, 21(3), 470-476.
[16] Yang, Y., Zhang, L., Lv, J., & Wang, C. (2012). Experimental study on fracture process of concrete by acoustic emission technology. Przeglad Elektrotechnic-zny, 88(9b), 55-58.
[17] Ohtsu, M. (1995). Acoustic emission theory for moment tensor analysis. Journal of Research in Nondestructive Evaluation, 6(3), 169-184.
[18] Ohtsu, M., Okamoto, T., & Yuyama, S. (1998). Moment tensor analysis of acoustic emission for cracking mechanisms in concrete. ACI Structural Journal, 95(2).
[19] Landis, E. N. (1999). Micro–macro fracture relationships and acoustic emissions in concrete. Construction and Building Materials, 13(1), 65-72.
[20] Ohno, K., & Ohtsu, M. (2010). Crack classification in concrete based on acoustic emission. Construction and Building Materials, 24(12), 2339-2346.
[21] JCMS-III B5706 (2003). Monitoring method for active cracks in concrete by acoustic emission. Federation of Construction Materials Industries.
[22] Aggelis, D. G., Shiotani, T., & Terazawa, M. (2010). Assessment of construction joint effect in full-scale concrete beams by acoustic emission activity. Journal of engineering mechanics, 136(7), 906–912.
[23] Aggelis, D. G., Soulioti, D. V., Sapouridis, N., Barkoula, N. M., Paipetis, A. S., & Matikas, T. E. (2010). Acoustic emission characterization of steel fibre reinforced concrete during bending. Proceedings of SPIE , 7649, 764912.
[24] Aggelis, D. G., Soulioti, D. V., Sapouridis, N., Barkoula, N. M., Paipetis, A. S., & Matikas, T. E. (2011). Acoustic emission characterization of the fracture process in fibre reinforced concrete. Construction and Building Materials, 25(11), 4126-4131.
[25] Aggelis, D. G. (2011). Classification of cracking mode in concrete by acoustic emission parameters. Mechanics Research Communications, 38(3), 153-157.
[26] Shahidan, S., Pulin, R., Muhamad Bunnori, N., & Holford, K. M. (2013). Dam-age classification in reinforced concrete beam by acoustic emission signal anal-ysis. Construction and Building Materials, 45, 78-86.
[27] Suaris, W., & Van Mier, J. G. M. (1995). Acoustic emission source characteriz-ation in concrete under biaxial loading. Materials and structures, 28(8), 444-449.
[28] Ohtsu, M., & Tomoda, Y. (2007). Corrosion process in reinforced concrete identified by acoustic emission. Materials transactions, 48(6), 1184-1189.
[29] Hardy Jr, H. R. (1999). Application of acoustic emission techniques to rock mechanics research. Acoustic Emission, ASTM STP, 505, 41-83.
[30] 林宏明(2000),「軟岩在不同環境及應力條件下之力學行為」,國立成功大學土木工程研究所博士論文。
[31] Ohtsu, M. (1988). Source inversion of acoustic emission waveform. Structural Eng./Earthquake Eng, 5(2), 275-283.
[32] Merson, E. D., Krishtal, M. M., Merson, D. L., Eremichev, A. A., & Vinogradov, A. (2012). Effect of strain rate on acoustic emission during hydrogen assisted cracking in high carbon steel. Materials Science and Engineering: A, 550, 408-417.
[33] Vinogradov, A., Orlov, D., Danyuk, A., & Estrin, Y. (2013). Effect of grain size on the mechanisms of plastic deformation in wrought Mg–Zn–Zr alloy revealed by acoustic emission measurements. Acta Materialia, 61(6), 2044-2056.
[34] Gemma R, Dobron P, Cizek J, & Pundt A. (2014). Stress release and defect occurrence in V1−xFex films upon hydrogen loading: H-induced superabundant vacancies, movement and creation of dislocations. Acta Materialia, 67, 308-323.
[35] Trojanová, Z., Száraz, Z., Chmelík, F., & Lukáč, P. (2011). Acoustic emission from deformed magnesium alloy based composites. Materials Science and Engineering: A, 528(6), 2479-2483.
[36] Daniels, K. E., Bauer, C., & Shinbrot, T. (2013). Correlations between electrical and mechanical signals during granular stick-slip events. Granular Matter, 1-6.
[37] Máthis, K., Čapek, J., Zdražilová, Z., & Trojanová, Z. (2011). Investigation of tension–compression asymmetry of magnesium by use of the acoustic emission technique. Materials Science and Engineering: A, 528(18), 5904-5907.
[38] Dulkin, E., Mojaev, E., Roth, M., Greicius, S., & Granzow, T. (2008). Detection of phase transitions in sodium bismuth titanate–barium titanate single crystals by acoustic emission. Applied Physics Letters, 92(1), 012904-012904.
[39] Fang, L., Lu, Q., Li, X., Liu, R., & Wang, X. (2013). Flow noise characterization of gas–liquid two-phase flow based on acoustic emission. Measurement, 46(10), 3887-3897.
[40] Elfergani, H. A., Pullin, R., & Holford, K. M. (2013). Damage assessment of corrosion in prestressed concrete by acoustic emission. Construction and Building Materials, 40, 925-933.
[41] Kaphle, M. R., Tan, A., Thambiratnam, D., & Chan, T. H. (2011). Damage quantification techniques in acoustic emission monitoring. In WCEAM 2011 Sixth World Congress on Engineering Asset Management, Cincinnati, OH, USA.
[42] Shah, S. G., & Chandra Kishen, J. M. (2010). Fracture behavior of concrete–concrete interface using acoustic emission technique. Engineering Fracture Mechanics, 77(6), 908-924.
[43] Shah, S. G., & Chandra Kishen, J. M. (2012). Use of acoustic emissions in flexural fatigue crack growth studies on concrete. Engineering Fracture Mechanics, 87, 36-47.
[44] Lavrov, A. (2003). The Kaiser effect in rocks: principles and stress estimation techniques. International Journal of Rock Mechanics and Mining Sciences, 40(2), 151-171.
[45] Waller, J. M., Saulsberry, R. L., & Andrade, E. (2009). Use of acoustic emission to monitor progressive damage accumulation in Kevlar 49 composites. AIP Conf Proc, 1211, 1111-1118.
[46] Santulli, C., Billi, F., & Stivali, F. (1997). Reliability of glass fibre-epoxy adhesive joints under repeated loading cycles through acoustic emission and acousto-ultrasonic technique. Mechanical Behaviour of Adhesive Joints: Analysis, Testing and Design, 191-204.
[47] Huang, M., Jiang, L., Liaw, P. K., Brooks, C. R., Seeley, R., & Klarstrom, D. L. (1998). Using acoustic emission in fatigue and fracture materials research. JOM, 50(11), 1-14.
[48] Pollock, A. (1989). Acoustic emission inspection. ASM Handbook, 17, 278-294.
[49] Bray, D. E., & McBride, D. (1992). Acoustic emission technology. Nondestru-ctive Testing Techniques, New York, 345-377.
[50] Hollis, G. C. (2004). Non-invasive acoustic emission testing of compressed trabecular bone and porous ceramics using seismic analysis techniques. Master's thesis .Georgia Institute of Technology.
[51] Physical Acoustics Coporation (PAC) (1995). Mistras 2001 AEDSP-32/16 User’s Manual, PAC Part Number 6300-1000.
[52] 裴廣智、干裕成、顏聰、林東威(2009),「鋼筋混凝土版載重試驗歷程之音射現象初步探討」,中國土木水利工程學刊,第二十一卷第二期,頁155-168。
[53] 鄭錦智、曾良雄、林文宏(2002),「大範圍上篩選檢測技術於製程設備安全檢測之應用」,台灣中油股份有限公司。
[54] 陳永增、鄧惠源(1999),「非破壞檢測」,台北:全華科技。
[55] 曾聖智(1999),「岩石材料之音射及音射源定位研究」,國立成功大學土木工程研究所碩士論文。
[56] Krystol Internal Membrane(KIM) Guidelines and Procedures (2013). Fraser Brown & Stratmore Limited (FBS Ltd).
[57] ASTM C109 (2002). Standard test method for compressive strength of hydraulic cement mortars (Using 2-in. or [50-mm] cube specimens). Annual book of ASTM standards. American Society for Testing and Materials.
[58] 林坤嶔(2014),「水泥基材料自癒能力之力電學檢測評估」,國立成功大學土木工程研究所碩士論文。
[59] Vahaviolos, S. J. (1999). Acoustic emission: standards and technology update. ASTM International.
[60] ASTM E976-10 (2010). Standard Guide for Determining the Reproducibility of Acoustic Emission Sensor Response. Annual book of ASTM standards. American Society for Testing and Materials.
[61] 翁文宏(2006),「音洩技術於地上油槽底板腐蝕檢測之應用」,石油季刊,第四十二卷第一期,頁73-81。
[62] Heil, C. E., & Walnut, D. F. (1989). Continuous and discrete wavelet transforms. SIAM review, 31(4), 628-666.
[63] 王意如(2006),「小波轉換應用於光纖感測之研究」,國立中山大學電機工程研究所碩士論文。
[64] Shiotani, T., Ohtsu, M., & Ikeda, K. (2001). Detection and evaluation of AE waves due to rock deformation. Construction and Building Materials, 15(5), 235-246.
[65] Finck, F., & Manthei, G. (2004). On near-field effects in signal based acoustic emission analysis. Otto graf journal, 15, 121-134.
[66] Carpinteri, A., Corrado, M., & Lacidogna, G. (2013). Heterogeneous materials in compression: Correlations between absorbed, released and acoustic emission energies. Engineering Failure Analysis, 33, 236-250.