| 研究生: |
王律棠 Wang, Lu-Tang |
|---|---|
| 論文名稱: |
具氧化鎂鎳覆蓋層之鎂摻雜氧化銦鎵鋅薄膜電晶體與場效應二極體於改善紫外光感測性能與可靠度之研究 Enhanced performance and stability of ultraviolet photodetectors based on Mg-IGZO thin film transistors and field effect diodes with NixMg1-xO capping layer |
| 指導教授: |
王水進
Wang, Shui-Jinn |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 128 |
| 中文關鍵詞: | 鎂摻雜氧化銦鎵鋅 、氧化鎂鎳 、薄膜電晶體 、場效應二極體 、覆蓋層 、紫外光偵測器 |
| 外文關鍵詞: | Magnesium doped indium gallium zinc oxide, magnesium nickel oxide, thin film transistors (TFTs), field effect diodes (FEDs), capping layer (CL), photodetectors |
| 相關次數: | 點閱:38 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文旨在以共濺鍍法於IGZO薄膜內部進行適量Mg摻雜以提升薄膜品質與能隙寬度之Mg-IGZO作為通道層,結合high-k Hf0.82Si0.18O2介電層製備具下閘極結構IGZO以及Mg(1.49%)-、Mg(3.17%)-與Mg(6.58%)-IGZO薄膜電晶體(Thin film transistors, TFTs),並探討通道層Mg摻雜含量於薄膜品質、元件電特性及可靠度之影響。其次,為能保有通道層厚度提升之優勢且可使元件操作於通道全空乏狀態,選用前項研究所製備具最佳元件電特性之Mg(3.17%)-TFT作為基礎元件,並以共濺鍍法於元件背通道表面進行氧化鎂鎳(NixMg1-xO)混合p-型材料之區域性沉積作為覆蓋層(capping layer, CL),並探討NixMg1-xO CLs內部Ni摻雜含量與結構參數於元件電特性及其應用於紫外光感測器(ultraviolet photodetectors, UV-PDs)光感測性能之分析研究。最後,本論文進一步藉由圖案化Ti金屬沉積方式將所製備Mg-IGZO與NixMg1-xO CL/Mg-IGZO TFTs之閘極與汲極連接(V_G=V_D),以製備具相同MOS結構之場效應二極體(field-effect diodes, FEDs),並進行TFTs與其相對應FEDs於操作便利性、光電特性及可靠度之研究與探討。
本論文依研究內容主要可分為「Mg-IGZO TFTs之製備與通道層Mg摻雜含量於薄膜品質、元件電特性及可靠度分析」、「NixMg1-xO CL/Mg-IGZO TFTs之製備與NixMg1-xO CL薄膜內Ni摻雜含量於元件電性及光感測性能分析」、「NixMg1-xO CL結構參數於NixMg1-xO CL/Mg-IGZO TFTs元件電性及光感測性能分析」與「TFTs與FEDs操作便利性、光電特性及可靠度分析」等四大部分,研究成果與討論依序重點說明如下:
第一部分「Mg-IGZO TFTs之製備與通道層Mg摻雜含量於薄膜品質、元件電特性及可靠度分析」之研究上,實驗結果顯示,所製備Mg-IGZO TFTs元件中,Mg (3.17%)-IGZO TFT呈現出最高之I_on/I_off = 2.13×107、最低之SS = 138 mV/dec、最高之μ_FE = 26.8 cm2/V∙s與最少之D_it = 7.02×1011 cm-2eV-1之最適化元件電特性;同時也具有最佳可靠度,相較於未摻雜IGZO TFT,Mg (3.17%)-IGZO TFT於遲滯分析下,∆V_th從0.127 V改善至0.039 V。於正/負偏壓應力1000秒測試下,∆V_th從0.259/-0.286 V改善至0.136/-0.098 V。
第二部分「NixMg1-xO CL/Mg-IGZO TFTs之製備與NixMg1-xO CL薄膜內Ni摻雜含量於元件電性及光感測性能分析」之研究上,實驗結果顯示,所製備之最適化Ni摻雜Ni0.47Mg0.53O CL結合Mg(3.17%)-IGZO TFT具最佳光感測性能,於275 nm波長之光響應(R_ph)、光偵測率(D^*)與光靈敏度(S_ph)分別為1390 A/W、1.19×10^16 Jones與4.35×10^7 A/A。
第三部分「Ni0.47Mg0.53O CL結構參數於Ni0.47Mg0.53O CL/Mg-IGZO TFTs元件電性及光感測性能分析」之研究上,實驗結果顯示,相較於T_ch=30 nm全空乏TFT,T_ch=45 nm部分空乏TFT之μ_FE與I_on分別提升約1.4倍與7.7倍;具CL方面,於固定CL厚度(T_CL= 60 nm)前提下,CL長度(L_CL)為5 μm之TFT具最高的場效移動率μ_FE = 35.9 cm2/V∙s與I_on/I_off = 5.92×107。於紫外光感測部分,具長度L_CL = 10 μm與厚度T_CL = 80 nm覆蓋層之Type B-10-80 TFT於275 nm紫外光波段照射下之光響應(R_ph)、光偵測率(D^*)與光靈敏度(S_ph)分別為1645 A/W、1.35×10^16 Jones 及 4.46×10^7A/A。
第四部份「TFTs與FEDs操作便利性、光電特性及可靠度分析」之研究上,以Ni0.47Mg0.53O CL/Mg-IGZO TFTs與FEDs進行光感測與可靠度分析,首先測試Type A-30、Type A-45與Type B-10-80 TFTs動態光響應(PPC)行為,實驗結果顯示三種元件皆有明顯PPC現象,經由正規化換算其第一週期上升(τ_r)/下降(τ_f)時間分別為0.79/2.09、0.74/1.77與0.88/2.86 s。為有效減少PPC現象對光響應之影響,採用一正閘極偏壓脈衝(V_G= 4 V),實驗結果顯示,Type A-30、Type A-45與Type B-10-80 TFTs之下降(τ_f)時間分別降為0.16、0.12與0.2 s。於Type A-30、Type A-45與Type B-10-80 TFTs與FEDs之光感測性能比較上,實驗結果顯示,FED光感測性能與TFT性能相關,若TFT操作於全空乏狀態,FED反偏暗電流較小,萃取出之光感測性能參數便可與TFT相媲美甚至優於TFT。於負偏壓應力測試其光感測之穩定度方面,實驗結果顯示,相較全空乏Type A-30 TFT,Type B-10-80 TFT於1000 s之負偏壓應力測試之臨界電壓(ΔV_th)與汲極電流(ΔI_D)偏移量分別降低16%與70%,Type B-10-80 FED之ΔI_D降低約33%。於照光感測之可靠度量測,全空乏Type A-30 FED與Type B-10-80 FED之光偵測率偏移量(〖∆D〗^*)分別比對應的TFT低約31%與38%,證實FED較TFT具較佳之光感測可靠度。
In this study, the high detection performance of ultraviolet photodetectors (UV-PDs) based on NixMg1-xO capping layer (CL)/ Mg-IGZO thin-film transistors (TFTs) and field-effect diodes (FEDs) which are the TFTs with gate electrode connected to drain electrode, are proposed and investigated. First, the use of Mg-doped IGZO films to enhance the interface quality and reliability of TFTs are demonstrated. It reeals that Mg(3.17%)-IGZO has the best device performance switching current ratio of 2.13×107, subcritical swing (SS) of 138 mV/dec and field effect mobility of 26.8 cm2/V∙s. The smallest threshold voltage shift after negative bias stress, tests for 1000 s of -0.098 V is obtained. The effectiveness of NiMgO capping layer (CL) in enhancing UV light detection performance based on TFTs and FEDs is investigated. The TFT with (thickness = 45 nm) Mg(3.17%)-IGZO channel layer and (length/thickness = 10 μm and 80 nm) NiMgO CL shows a better photoresponsivity (R_ph) of 1645 A/W and a detectivity (D^*) of 1.35×1016 Jones at 275 nm. The UV sensing performance has been greatly improved, as compared with the TFT without CL. In addition, the sensing performance and stability of TFTs and FED are compared. It shows that FED has the identical photoresponse as TFT, and also has better stability in ∆I_D(about 49.7 % reduction) after a negative bias stress at -4 V for 1000 s.
[1] E. Munoz, E. Monroy, J. L. Pau, F. Calle, F. Omnes, and P. Gibart, “III nitrides and UV detection,” J. Phys. Condens. Matter. 13(32), 7115-7137 (2001).
[2] E. Monroy, F. Omnes, and F. Calle, “Wide-bandgap semiconductor ultraviolet photodetectors,” Semicond. Sci. Technol. 18(4), R33-R51 (2003).
[3] Z. Alaie, S. M. Nejad, and M. H. Yousefi, “Recent advances in ultraviolet photodetectors,” Mater. Sci. Semicond. Process. 29, 16-55 (2015).
[4] M. P. Ulmer, “Future UV detectors for space applications,” Optical Sensing II 6189, 216-225 (2006).
[5] J. X. Chen, W. X. Ouyang, W. Yang, J. H. He, and X. S. Fang, “Recent Progress of Heterojunction Ultraviolet Photodetectors: Materials, Integrations, and Applications,” Adv. Funct. Mater. 30(16), 1909909 (2020).
[6] Y. C. Wang, C. Wu, D. Y. Guo, P. G. Li, S. L. Wang, A. P. Liu, C. R. Li, F. M. Wu, and W. H. Tang, “All-Oxide NiO/Ga2O3 p-n Junction for Self-Powered UV Photodetector,” ACS Appl. Electron. Mater. 2(7), 2032-2038 (2020).
[7] D. Wu, Z. H. Zhao, W. Lu, L. Rogee, L. H. Zeng, P. Lin, Z. F. Shi, Y. T. Tian, X. J. Li, and Y. H. Tsang, “Highly sensitive solar-blind deep ultraviolet photodetector based on graphene/PtSe2/beta-Ga2O3 2D/3D Schottky junction with ultrafast speed,” Nano Res. 14(6), 1973-1979 (2021).
[8] Y. X. Zhu, Q. X. Li, Z. Yang, C. Wang, and Z. Wei, “Research on photosensitive gate ferroelectric integrated GaN HEMT photodetector,” AIP Adv. 11(3), 035019 (2021).
[9] S. Hou, P. E. Hellstrom, C. M. Zetterling, and M. Ostling, “A 4H-SiC BJT as a Switch for On-Chip Integrated UV Photodiode,” IEEE Electron Device Lett. 40(1), 51-54 (2019).
[10] S. Yang, D. Zhou, H. Lu, D. J. Chen, F. F. Ren, R. Zhang, and Y. D. Zheng, “4H-SiC p-i-n Ultraviolet Avalanche Photodiodes Obtained by Al Implantation,” IEEE Photon. Technol. Lett. 28(11), 1185-1188 (2016).
[11] Z. H. Lou, L. H. Zeng, Y. G. Wang, D. Wu, T. T. Xu, Z. F. Shi, Y. T. Tian, X. J. Li, and Y. H. Tsang, “High-performance MoS2/Si heterojunction broadband photodetectors from deep ultraviolet to near infrared,” Opt. Lett. 42(17), 3335-3338 (2017).
[12] J. Son, “UV detectors : status and prospects,” UV and Higher Energy Photonics: From Materials to Applications 10727, 12-20 (2018).
[13] J. Fallert, R. Hauschild, F. Stelzl, A. Urban, M. Wissinger, H. J. Zhou, C. Klingshirn, and H. Kalt, “Surface-state related luminescence in ZnO nanocrystals,” J. Appl. Phys. 101(7), 073506 (2007).
[14] K. W. Liu, M. Sakurai, and M. Aono, “ZnO-Based Ultraviolet Photodetectors,” J. Sens. 10(9), 8604-8634 (2010).
[15] M. R. Esmaeili-Rad, N. P. Papadopoulos, M. Bauza, A. Nathan, and W. S. Wong, “Blue-Light-Sensitive Phototransistor for Indirect X-Ray Image Sensors,” IEEE Electron Device Lett. 33(4), 567-569 (2012).
[16] T. H. Chang, C. J. Chiu, S. J. Chang, T. Y. Tsai, T. H. Yang, Z. D. Huang, and W. Y. Weng, “Amorphous InGaZnO ultraviolet phototransistors with double-stack Ga2O3/SiO2 dielectric,” Appl. Phys. Lett. 102(22), 221104 (2013).
[17] M. G. Yun, Y. K. Kim, C. H. Ahn, S. W. Cho, W. J. Kang, H. K. Cho, and Y. H. Kim, “Low voltage-driven oxide phototransistors with fast recovery, high signal-to-noise ratio, and high responsivity fabricated via a simple defect-generating process,” Sci. Rep. 6(1), 1-9 (2016).
[18] M. K. Dai, Y. R. Liou, J. T. Lian, T. Y. Lin, and Y. F. Chen, “Multifunctionality of Giant and Long-Lasting Persistent Photoconductivity: Semiconductor-Conductor Transition in Graphene Nanosheets and Amorphous InGaZnO Hybrids,” ACS Photonics 2(8), 1057-1064 (2015).
[19] S. Jeon, S. E. Ahn, I. Song, C. J. Kim, U. I. Chung, E. Lee, I. Yoo, A. Nathan, S. Lee, J. Robertson, and K. Kim, “Gated three-terminal device architecture to eliminate persistent photoconductivity in oxide semiconductor photosensor arrays,” Nat. Mater. 11(4), 301-305 (2012).
[20] K. Kotani, A. Sasaki, and T. Ito, “High-Efficiency Differential-Drive CMOS Rectifier for UHF RFIDs,” IEEE J. Solid-State Circuits 44(11), 3011-3018 (2009).
[21] W. J. Chen, K. Y. Wong, W. Huang, and K. J. Chen, “High-performance AlGaN/GaN lateral field-effect rectifiers compatible with high electron mobility transistors,” Appl. Phys. Lett. 92(25), 253501 (2008).
[22] Z. W. Wang, F. H. Alshammari, H. Omran, M. K. Hota, H. A. Al-Jawhari, K. N. Salama, and H. N. Alshareef, “All-Oxide Thin Film Transistors and Rectifiers Enabling On-Chip Capacitive Energy Storage,” Adv. Electron. Mater. 5(12), 1900531 (2019).
[23] A. K. Tripathi, E. C. P. Smits, J. B. P. H. van der Putten, M. van Neer, K. Myny, M. Nag, S. Steudel, P. Vicca, K. O'Neill, E. van Veenendaal, J. Genoe, P. Heremans, and G. H. Gelinck, “Low-voltage gallium-indium-zinc-oxide thin film transistors based logic circuits on thin plastic foil: Building blocks for radio frequency identification application,” Appl. Phys. Lett. 98(16), 162102 (2011).
[24] X. W. Feng, A. Scholz, M. B. Tahoori, and J. Aghassi-Hagmann, “An Inkjet-Printed Full-Wave Rectifier for Low-Voltage Operation Using Electrolyte-Gated Indium-Oxide Thin-Film Transistors,” IEEE Trans. Electron Devices 67(11), 4918-4923 (2020).
[25] Y. Li, Y. L. Pei, R. Hu, Z. M. Chen, Y. Zhao, Z. Shen, B. F. Fan, J. Liang, and G. Wang, “Effect of channel thickness on electrical performance of amorphous IGZO thin-film transistor with atomic layer deposited alumina oxide dielectric,” Curr. Appl. Phys. 14(7), 941-945 (2014).
[26] C. Y. Chang, R. M. Ko, S. J. Huang, M. Y. Su, C. H. Wu, and S. J. Wang, “Ultraviolet Photodetectors Based on In-Ga-ZnO Field-effect Diodes with NiO Capping Layer,” IEEE Electron Device Lett. 43(8), 1299-1302 (2022).
[27] H. Yoo, W. G. Kim, B. H. Kang, H. T. Kim, J. W. Park, D. H. Choi, T. S. Kim, J. H. Lim, and H. J. Kim, “High Photosensitive Indium-Gallium-Zinc Oxide Thin-Film Phototransistor with a Selenium Capping Layer for Visible-Light Detection,” ACS Appl. Mater. Interfaces 12(9), 10673-10680 (2020).
[28] J. J. Yu, K. Javaid, L. Y. Liang, W. H. Wu, Y. Liang, A. R. Song, H. L. Zhang, W. Shi, T. C. Chang, and H. T. Cao, “High-Performance Visible-Blind Ultraviolet Photodetector Based on IGZO TFT Coupled with p-n Heterojunction,” ACS Appl. Mater. Interfaces 10(9), 8102-8109 (2018).
[29] H. Wang, Y. B. Xiao, Z. F. Chen, W. Y. Xu, M. Z. Long, and J. B. Xu, “Solution-processed PCDTBT capped low-voltage InGaZnOx thin film phototransistors for visible-light detection,” Appl. Phys. Lett. 106(24), 242102 (2015).
[30] K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, “Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors,” Nature 432(7016), 488-492 (2004).
[31] C. Q. Zhou, Q. Ai, X. Chen, X. H. Gao, K. W. Liu, and D. Z. Shen, “Ultraviolet photodetectors based on wide bandgap oxide semiconductor films,” Chin. Phys. B. 28(4), 048503 (2019).
[32] U. Ozgur, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan, V. Avrutin, S. J. Cho, and H. Morkoc, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys. 98(4), 11 (2005).
[33] D. G. Thomas, “The Exciton Spectrum of Zinc Oxide,” J. Phys. Chem. Solids. 15(1-2), 86-96 (1960).
[34] Z. J. Pan, X. L. Zhao, W. B. Peng, X. M. Qi, and Y. N. He, “A ZnO-Based Programmable UV Detection Integrated Circuit Unit,” IEEE Sens. J. 16(22), 7919-7923 (2016).
[35] D. Y. Son, J. H. Im, H. S. Kim, and N. G. Park, “11% Efficient Perovskite Solar Cell Based on ZnO Nanorods: An Effective Charge Collection System,” J. Phys. Chem. C 118(30), 16567-16573 (2014).
[36] M. A. Borysiewicz, “ZnO as a Functional Material, a Review,” Cryst. 9(10), 505 (2019).
[37] F. Vigue, P. Vennegues, C. Deparis, S. Vezian, M. Laugt, and J. P. Faurie, “Growth modes and microstructures of ZnO layers deposited by plasma-assisted molecular-beam epitaxy on (0001) sapphire,” J. Appl. Phys. 90(10), 5115-5119 (2001).
[38] D. C. Look, J. W. Hemsky, and J. R. Sizelove, “Residual native shallow donor in ZnO,” Phys. Rev. Lett. 82(12), 2552-2555 (1999).
[39] H. Hosono, “Ionic amorphous oxide semiconductors: Material design, carrier transport, and device application,” J. Non-Cryst. Solids 352(9-20), 851-858 (2006).
[40] J. H. Noh, S. Y. Ryu, S. J. Jo, C. S. Kim, S. W. Sohn, P. D. Rack, D. J. Kim, and H. K. Baik, “Indium Oxide Thin-Film Transistors Fabricated by RF Sputtering at Room Temperature,” IEEE Electron Device Lett. 31(6), 567-569 (2010).
[41] S. Parthiban, and J. Y. Kwon, “Role of dopants as a carrier suppressor and strong oxygen binder in amorphous indium-oxide-based field effect transistor,” J. Mater. Res. 29(15), 1585-1596 (2014).
[42] S. Hong, S. Lee, M. Mativenga, and J. Jang, “Reduction of Negative Bias and Light Instability of a-IGZO TFTs by Dual-Gate Driving,”IEEE Electron Device Lett. 35(1), 93-95 (2014).
[43] K. V. Rao, and C. S. Sunandana, “XRD, microstructural and EPR susceptibility characterization of combustion synthesized nanoscale Mg1-xNixO solid solutions,” J. Phys. Chem. Solids 69(1), 87-96 (2008).
[44] N. A. Richter, S. Sicolo, S. V. Levchenko, J. Sauer, and M. Scheffler, “Concentration of Vacancies at Metal-Oxide Surfaces: Case Study of MgO(100),” Phys. Rev. Lett. 111(4), 045502 (2013).
[45] S. P. Mitoff, “Electrical Conductivity of Single Crystals of Mgo,” J. Chem. Phys. 31(5), 1261-1269 (1959).
[46] A. T. Vu, S. Jiang, Y. H. Kim, and C. H. Lee, “Controlling the Physical Properties of Magnesium Oxide Using a Calcination Method in Aerogel Synthesis: Its Application to Enhanced Sorption of a Sulfur Compound,” Ind. Eng. Chem. Res. 53(34), 13228-13235 (2014).
[47] Q. Li, S. Y. Zhang, J. P. Wang, and H. Gao, “Process analysis of MgO film on NdFeB magnet by sol-gel method,” Surf. Eng. 25(8), 589-593 (2009).
[48] G. Sharma, R. Soni, and N. D. Jasuja, “Phytoassisted synthesis of magnesium oxide nanoparticles with Swertia chirayaita,” J. Taibah Univ. Sci. 11(3), 471-477 (2017).
[49] I. O. Wilson, “Magnesium-Oxide as a High-Temperature Insulant,” IET Sci. Meas. Technol. 128(3), 159-164 (1981).
[50] J. Hornak, P. Trnka, P. Kadlec, O. Michal, V. Mentlik, P. Sutta, G. M. Csanyi, and Z. A. Tamus, “Magnesium Oxide Nanoparticles: Dielectric Properties, Surface Functionalization and Improvement of Epoxy-Based Composites Insulating Properties,” J. Nanomater. 8(6), 381 (2018).
[51] H. Ghadi, P. Murkute, A. Ghosh, S. M. M. D. Dwivedi, A. Mondal, and S. Chakrabarti, “Ultrasensitive zinc magnesium oxide nanorods based micro-sensor platform for UV detection and light trapping,” Sens. Actuator A Phys. 278, 127-139 (2018).
[52] F. Mirza, and H. Makwana, “Synthesis and Characterization of Magnesium Oxide (MgO) Nanoparticles by Co-precipitation Method,” International Journal of Innovative Research in Technology (IJIRT). 8(6), 2349-6002 (2021).
[53] I. G. Austin, and N. F. Mott, “Polarons in Crystalline and Non-Crystalline Materials,” Adv. Phys. 18(71), 41-102 (1969).
[54] G. Boschloo, and A. Hagfeldt, “Spectroelectrochemistry of nanostructured NiO,” J. Phys. Chem. B 105(15), 3039-3044 (2001).
[55] M. Patel, H. S. Kim, and J. Kim, “All Transparent Metal Oxide Ultraviolet Photodetector,” Adv. Electron. Mater. 1(11), 1500232 (2015).
[56] K. O. Ukoba, A. C. Eloka-Eboka, and F. L. Inambao, “Review of nanostructured NiO thin film deposition using the spray pyrolysis technique,” Renew. Sustain. Energy Rev. 82, 2900-2915 (2018).
[57] C. C. Diao, C. Y. Huang, C. F. Yang, and C. C. Wu, “Morphological, Optical, and Electrical Properties of p-Type Nickel Oxide Thin Films by Nonvacuum Deposition,” J. Nanomater. 10(4), 636 (2020).
[58] A. M. Salem, M. Mokhtar, and G. A. El-Shobaky, “Electrical properties of pure and Li2O-doped NiO/MgO system,” Solid State Ion. 170(1-2), 33-42 (2004).
[59] J. Zaanen, G. A. Sawatzky, and J. W. Allen, “Band-Gaps and Electronic-Structure of Transition-Metal Compounds,” Phys. Rev. Lett. 55(4), 418-421 (1985).
[60] A. Kuzmin, and N. Mironova, “Composition dependence of the lattice parameter in NicMg1-cO solid solutions,” J. Phys. Condens. Matter. 10(36), 7937-7944 (1998).
[61] J. K. Deng, M. Mortazavi, N. V. Medhekar, and J. Z. Liu, “Band engineering of Ni1-xMgxO alloys for photocathodes of high efficiency dye-sensitized solar cells,” J. Appl. Phys. 112(12), 123703 (2012).
[62] W. Z. Xie, S. J. Jiao, D. B. Wang, S. Y. Gao, J. Z. Wang, Q. J. Yu, and H. T. Li, “The effect of sputtering gas pressure on the structure and optical properties of MgNiO films grown by radio frequency magnetron sputtering,” Appl. Surf. Sci. 405, 152-156 (2017).
[63] A. Abliz, “Hydrogenation of Mg-Doped InGaZnO Thin-Film Transistors for Enhanced Electrical Performance and Stability,” IEEE Trans. Electron Devices 68(7), 3379-3383 (2021).
[64] B. Y. Su, S. Y. Chu, Y. D. Juang, and S. Y. Liu, “Effects of Mg doping on the gate bias and thermal stability of solution-processed InGaZnO thin-film transistors,” J. Alloys Compd. 580, 10-14 (2013).
[65] T. N. K. Kinoshita, S. Shingubara, M. Inada, and T. Saitoh, “Optical absorption properties of Ni1− xMgxO thin films,” 2017 IEEE International Meeting for Future of Electron Devices, Kansai (IMFEDK). 52-53 (2017).
[66] A. Wang, B. H. Calhoun, and A. P. Chandrakasan, “Sub-Threshold Design for Ultra Low-Power Systems,” Berlin, Germany: Springer, 2006.
[67] S. Jun, C. Jo, H. Bae, H. Choi, D. H. Kim, and D. M. Kim, “Unified Subthreshold Coupling Factor Technique for Surface Potential and Subgap Density-of-States in Amorphous Thin Film Transistors,” IEEE Electron Device Lett. 34(5), 641-643 (2013).
[68] J. P. Campbell, K. P. Cheung, J. S. Suehle, and A. Oates, “A Simple Series Resistance Extraction Methodology for Advanced CMOS Devices,” IEEE Electron Device Lett. 32(8), 1047-1049 (2011).
[69] E. N. Cho, J. H. Kang, C. E. Kim, P. Moon, and I. Yun, “Analysis of Bias Stress Instability in Amorphous InGaZnO Thin-Film Transistors,” IEEE Trans. Device Mater. Reliab. 11(1), 112-117 (2011).
[70] R. Ghosh, G. K. Paul, and D. Basak, “Effect of thermal annealing treatment on structural, electrical and optical properties of transparent sol-gel ZnO thin films,” Mater. Res. Bull. 40(11), 1905-1914 (2005).
[71] Y. Yang, H. Lu, and S. Zhang, “P‐1.7: Influence of Mg Content and Argon/Oxygen Ratio on Photoelectric properties of co‐sputtering MIZO,” SID Symposium Digest of Technical Papers 49 538-540 (2018).
[72] A. Reed, C. Stone, K. Roh, H. W. Song, X. Y. Wang, M. Y. Liu, D. K. Ko, K. No, and S. Lee, “The role of third cation doping on phase stability, carrier transport and carrier suppression in amorphous oxide semiconductors,” J. Mater. Chem. C 8(39), 13798-13810 (2020).
[73] J. D. Hwang, and Y. A. Cheng, “Enhancing the Performance of NiO-Based Metal-Semiconductor-Metal Ultraviolet Photodetectors Using a MgO Capping Layer,” IEEE Sens. J. 21(24), 27400-27404 (2021).
[74] M. C. Li, M. J. Dai, S. S. Lin, S. C. Chen, J. Xu, X. L. Liu, E. H. Wu, A. N. Ding, J. H. Gong, and H. Sun, “Effect of annealing temperature on the optoelectronic properties and structure of NiO films,” Ceram. Int. 48(2), 2820-2825 (2022).
[75] B. Kim, D. Lee, B. Hwang, D. J. Kim, and C. K. Kim, “Effects of Mg doping and annealing temperature on the performance of Mg-doped ZnO nanoparticle thin-film transistors,” Mol. Cryst. Liq. Cryst., 735(1) 61-74 (2022).
[76] C. W. Song, K. H. Kim, J. W. Yang, D. H. Kim, Y. J. Choi, C. H. Hong, J. H. Shin, H. I. Kwon, S. H. Song, and W. S. Cheong, “Effects of Mg Suppressor Layer on the InZnSnO Thin-Film Transistors,” J. Semicond. Technol. Sci. 16(2), 198-203 (2016).
[77] S. Z. Karazhanov, P. Ravindran, P. Vajeeston, A. Ulyashin, T. G. Finstad, and H. Fjellvag, “Phase stability, electronic structure, and optical properties of indium oxide polytypes,” Phys. Rev. B 76(7), 075129 (2007).
[78] C. A. Niedermeier, M. Rasander, S. Rhode, V. Kachkanov, B. Zou, N. Alford, and M. A. Moram, “Band gap bowing in NixMg1-xO,” Sci. Rep. 6(1), 1-9 (2016).
[79] D. Y. Lee, H. T. Seo, and J. G. Park, “Effects of the radio-frequency sputtering power of an MgO tunneling barrier on the tunneling magneto-resistance ratio for Co2Fe6B2/MgO-based perpendicular-magnetic tunnel junctions,” J. Mater. Chem. C. 4(1), 135-141 (2016).
[80] C. Y. Zhao, J. Li, D. Y. Zhong, C. X. Huang, J. H. Zhang, X. F. Li, X. Y. Jiang, and Z. L. Zhang, “Mg Doping to Simultaneously Improve the Electrical Performance and Stability of MgInO Thin-Film Transistors,” IEEE Trans. Electron Devices 64(5), 2216-2220 (2017).
[81] C. J. Ku, Z. Q. Duan, P. I. Reyes, Y. C. Lu, Y. Xu, C. L. Hsueh, and E. Garfunkel, “Effects of Mg on the electrical characteristics and thermal stability of MgxZn1-xO thin film transistors,” Appl. Phys. Lett. 98(12), 123511 (2011).
[82] S. Y. Lee, D. H. Kim, E. Chong, Y. W. Jeon, and D. H. Kim, “Effect of channel thickness on density of states in amorphous InGaZnO thin film transistor,” Appl. Phys. Lett. 98(12), 122105 (2011).
[83] A. Shaw, T. Whittles, I. Z. Mitrovic, J. Jin, J. Wrench, D. Hesp, V. Dhanak, P. R. Chalker, and S. Hall, “Physical and electrical characterization of Mg-doped ZnO thin-film transistors,” 2015 45th European Solid State Device Research Conference (ESSDERC). 206-209 (2015).
[84] H. S. Lim, Y. S. Rim, D. L. Kim, W. H. Jeong, and H. J. Kim, “Carrier-Suppressing Effect of Mg in Solution-Processed Zn-Sn-O Thin-Film Transistors,” Electrochem. Solid-State Lett. 15(3), H78-H80 (2012).
[85] C. F. Hu, J. Y. Feng, J. Zhou, and X. P. Qu, “Investigation of oxygen and argon plasma treatment on Mg-doped InZnO thin film transistors,” Appl. Phys. A. 122(11), 1-8 (2016).
[86] M.-Y. S. Sin-Jhih Huang, Chao-Yen Chang, Shui-Jinn Wang, and Rong-Ming Ko, “Effects of Channel Thickness and Operation Condition on the Sensing Performance of Ultraviolet Photodetectors Based on IGZO Field Effect Diodes,” Soild State Devices and Materials. (2021).
[87] S. P. Chang, W. C. Hua, and J. Y. Li, “High Responsivity Indium-Zinc-Oxide Ultraviolet Thin-Film Phototransistor,” J. Nanosci. Nanotechnol. 17(7), 4864-4866 (2017).
[88] T. H. Chang, C. J. Chiu, W. Y. Weng, S. J. Chang, T. Y. Tsai, and Z. D. Huang, “High responsivity of amorphous indium gallium zinc oxide phototransistor with Ta2O5 gate dielectric,” Appl. Phys. Lett. 101(26), 261112 (2012).
[89] Z. W. Pei, H. C. Lai, J. Y. Wang, W. H. Chiang, and C. H. Chen, “High-Responsivity and High-Sensitivity Graphene Dots/a-IGZO Thin-Film Phototransistor,” IEEE Electron Device Lett. 36(1), 44-46 (2015).
[90] W. L. Huang, C. C. Yang, S. P. Chang, and S. J. Chang, “Photoresponses of Zinc Tin Oxide Thin-Film Transistor,” J. Nanosci. Nanotechnol. 20(3), 1704-1708 (2020).
[91] Y. C. Cheng, S. P. Chang, I. C. Chen, Y. L. Tsai, T. H. Cheng, and S. J. Chang, “Polycrystalline In-Ga-O Thin-Film Transistors Coupled With a Nitrogen Doping Technique for High-Performance UV Detectors,” IEEE Trans. Electron Devices. 67(1), 140-145 (2020).