| 研究生: |
盧志豪 Lu, Chih-Hao |
|---|---|
| 論文名稱: |
氧化鎢奈米材料製備及其應用於電致變色元件之研究 Study of tungsten oxide nanomaterials for electrochromic devices applications |
| 指導教授: |
洪敏雄
Hon, Min-Hsiung |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 81 |
| 中文關鍵詞: | 電致變色 、六方晶相氧化鎢 、奈米棒 、奈米線 、陣列 、互補式元件 |
| 外文關鍵詞: | electrochromic, WO3 nanorods, W18O49 nanowire arrays, hydrothermal, solvothermal |
| 相關次數: | 點閱:125 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由於環保意識的抬頭,使得智慧型節能的材料與技術獲得重視,電致變色材料的應用是近年來廣泛被學術界研究的一項節能光學元件技術,它可以被應用在建築節能管理系統與汽車玻璃上。智慧型玻璃在時尚感與節能等方面的應用前景受到了愈來愈多的關注。在變色材料的選擇上,與目前使用的非晶相與單斜晶相氧化鎢相比,六方晶相氧化鎢因其優異的結晶特性、特殊的穿隧結構以及結合奈米化所獲得的高比表面積等特性,被廣泛認為是具應用性之新世代電致變色材料。
本研究利用鎢酸鈉與氯化鈉混合水溶液為前驅物,自行設計壓力釜以水熱法合成氧化鎢奈米棒。研究中探討氯化鈉結構指向劑(capping agent)添加量對成長氧化鎢奈米棒之影響。發現添加5.4wt%氯化鈉可以得到均勻氧化鎢奈米棒結構。另外,發現固定鎢酸鈉4.7wt%、成長時間24hr、反應溫度180℃,滴定氯化氫控制pH值,可以分別獲得氧化鎢奈米棒束狀結構或均勻分開棒狀粉末;於XRD與TEM分析中得知合成之氧化鎢為六方晶體結構具c軸面[0002]優選成長方向;於BET分析中發現合成時間18hr之氧化鎢奈米棒擁有最高的比表面積值,此外成功的利用溶液蒸發自組裝的方式沉積氧化鎢奈米棒於ITO玻璃上,於電致變色著色態呈現深藍色且擁有極低光穿透率。
此外,透過鎢金屬薄膜輔助水熱法成長氧化鎢奈米棒陣列。由XRD與FE-SEM的分析結果顯示,藉由水熱法在200 oC進行8 h的水熱反應,透過鎢薄膜提供成核的位置且利用氯化鈉作為結構指向劑,可以獲得平均直徑22nm,長度240nm的單斜晶相氧化鎢奈米棒陣列。製備的電致變色元件於0.1V的驅動電壓下作用10s獲得最大對比度在632.8nm波段達到41.2%。
此外,利用溶熱法在不需要晶種層輔助的情況下直接於基材上成長少見的W18O49奈米線陣列,透過聚乙二醇(PEG)當作結構指向劑進而控制材料的尺寸並透過PEG的添加量合成奈米棒陣列來探討其成長機制,以其組裝的電致變色元件擁有高對比度(49.64%在632.8nm)、高電致變色壽命穩定度(>3000 CV cycles),以及快速的響應速率,其著色態時間為7.9s,去色態為1.4s。
最後製備互補式電致變色元件,期望能夠將元件的性能最大化。實驗以六氯化鎢作為前驅物,利用溶熱法製備非化學計量比W18O49奈米線陣列,並藉由成長時間的參數探討奈米線形成機制以獲得均勻高比表面積的形貌,其電致變色元件的響應速率於著色態時間為10.8s,去色態為3.1s。其優異的結果歸因於高比表面積、特殊的穿隧結構以及特殊的非化學計量比特性。結合電鍍法製備普魯士藍做為對電極,更大幅的提升互補式元件的優勢,其對比度在632.8nm波段可達59.05%以及快速的響應速率,分別是著色態時間為6.9s,去色態為1.2s。突破了單一電致變色層的效能,使得互補式元件更具競爭性。
In this study, novel hexagonal WO3 nanorods were successfully prepared. The effects of pH and the amount of NaCl capping agent on the morphology of the WO3 nanorods were investigated. Uniform and regularly aligned WO3 nanorod films can be achieved by self-assembly in a drop coating process. Moreover, the electrochromic devices based on WO3 nanorods display a deep blue color and have a low transmittance (<2%) in the colored state.
Transparent crystalline tungsten oxide (WO3) nanorod arrays as electrochromic layer were directly prepared on fluorine-doped tin oxide (FTO) coated glasses via a facile tungsten film-assisted hydrothermal process using an aqueous tungsten hexachloride solution. The nanowire arrays show an excellent electrochromic property in contrast and response time.
W18O49 nanowire arrays as effective electrochromic working electrodes were fabricated on seed-free FTO glasses through a facile solvothermal process. Uniform monoclinic W18O49 nanowire arrays can be obtained at 180oC for 5 h. In the assembled electrochromic device the W18O49 nanowire array films show a fast response and switching time, extracted for from 50% transmittance change of 10.8 s for coloration (tc) and 3.1 s for bleaching (tb), which surpasses current traditional devices using monoclinic tungsten oxide (WO3) as the electrochromic material. The reasons can be attributed to their large specific surface area, special tunnel structure and non-stoichiometry characteristics. A complementary electrochromic device combining the W18O49 nanowire arrays with Prussian blue film shows a higher optical contrast (59.05% at 632.8 nm) and a faster switching response with a coloration time of 6.9 s and a bleaching time of 1.2 s, superior to the single layer W18O49 nanowire device. The complementary device with excellent electrochromic performance demonstrates a great potential for practical application.
1. E. S. Lee, D. L. DiBartolomeo and S. E. Selkowitz, “Electrochromic Windows for Commercial Buildings: Monitored Results from a Full-Scale Testbed”, ACEEE Summer Study on Energy Efficiency in Buildings, 2000, 3241.
2. http://www.tintable.com.tw/aboutus/company-profile.htm.
3. M. Deepa, A. G. Joshi, A. K. Srivastava, S. M. Shivaprasad, and S. A. Agnihotryz. “Electrochromic Nanostructured Tungsten Oxide Films by Sol-gel: Structure and Intercalation Properties”, Journal of The Electrochemical Society, 153, 2006, C365.
4. D. R. Bloomquist and R. D. Willett, “Thermochromic phase transitions in transition metal salts”, Coordination Chemistry Reviews, 47, 1982, 125.
5. Y. Hirshberg, “Photochromie dans la serie de la bianthrone”, Comptes Rendus Academy Science, Paris, 231, 1950, 903.
6. 鄧耀宗,“變色窗技術發展與節能效益”,化工技術,第八卷,第六期,2000年6月。
7. R. S. Crandall, P. J. Wojtowicz, and B. W. Faughnan, “Theory and measurement of the change in chemical potential of hydrogen in amorphous HxWO3 as a function of the stoichiometric parameter x”, Solid State Communications, 18, 1976, 1409.
8. http://sageglass.com/technology/how-it-works/.
9. D. T. Gillaspie, R. C. Tenent and A. C. Dillon, “Metal-oxide films for electrochromic applications: present technology and future directions”, Journal of Materials Chemistry, 2010, 20, 9585.
10. S. H. Baeck, K. S. Choi, T. F. Jaramillo, G. D. Stucky, E. W. Mcfarland, “Enhancement of photocatalytic and electrochromic properties of electrochemically fabricated mesoporous WO3 thin films”, Advanced Materials, 15, 2003, 1269.
11. M. Feng, A. L. Pan, H. R. Zhang, Z. A. Li, F. Liu, H. W. Liu, D. X. Shi, B. S. Zou, H. J. Gao, “Strong photoluminescence of nanostructured crystalline tungsten oxide thin films”, Applied Physics Letters, vol.86, 2005, 141901.
12. I. Turyan, U. O. Krasovec, B. Orel, T. Saraidorov, R. Reisfeld, D. Mandler, ““Writing–Reading–Erasing” on Tungsten Oxide Films Using the Scanning Electrochemical Microscope”, Advanced Materials, 12, 2000, 330.
13. J. L. Solis, S. Saukko, L. Kish, C.G. Granqvist, V. Lantto, “Semiconductor gas sensors based on nanostructured tungsten oxide”, Thin Solid Films, 391, 2001, 255.
14. E. Rossinyol, A. Prim, E. Pellicer, J. Arbiol, F. H. Ramirez, F. Peiro, A. Cornet, J. R. Morante, L. A. Solovyov, B. Tian, T. Bo, D. Zhao, “synthesis and Characterization of Chromium-Doped Mesoporous Tungsten Oxide for Gas Sensing Applications”, Advanced Functional Materials, 17, 2007, 1801.
15. C. Trimble, M. DeVries, J. S. Hale, D. W. Thompson, T. E. Tiwald, J. A. Woollam, “Infrared emittance modulation devices using electrochromic crystalline tungsten oxide, polymer conductor, and nickel oxide”, Thin Solid Films, 355, 1999, 26.
16. J. H. Yoon, S. R. Jang, R. Vittal, J. Lee, and K. J. Kim, “TiO2 nanorods as additive to TiO2 film for improvement in the performance of dye-sensitized solar cells”, Journal of Photochemistry and Photobiology A, 180, 2006, 184.
17. J. Zhang, J. p. Tu, G. h. Du, Z. M. Dong, Y. S. Wu, L. Chang, D. Xie, G. F. Cai, and X. L. Wang, “Ultra-thin WO3 nanorod embedded polyaniline composite thin film: Synthesis and electrochromic characteristics”, Solar Energy Materials and Solar Cells, 114, 2013, 31.
18. F. Zheng, M. Zhang, and M. Guo, “Controllable preparation of WO3 nanorod arrays by hydrothermal method”, Thin Solid Films, 534, 2013, 45.
19. F. Zheng, H. Lu, M. Guo, and M. Zhang, “Effect of substrate pre-treatment on controllable synthesis of hexagonal WO3 nanorod arrays and their electrochromic properties”, CrystEngComm, 15, 2013, 5828.
20. Z. W. Pan, Z. R. Dai, and Z. L. Wang, “Nanobelts of Semiconducting Oxides”, Science, 291, 2001, 1947.
21. Z. R. Dai, J. L. Gole, J. D. Stout, and Z. L. Wang, “Tin Oxide Nanowires, Nanoribbons, and Nanotubes”, The Journal of Physical Chemistry B, 106, 2002, 1274.
22. S. Li, M. Samy, E. Shall, “Synthesis and characterization photochromic molybdenum and tungsten oxide nanoparticles”, NanoStructured Materials, 12, 1999, 215.
23. F. Amano, E.Ishinaga, A. Yamakata, “Effect of Particle Size on the Photocatalytic Activity of WO3 Particles for Water Oxidation”, The Journal of Physical Chemistry C, 117, 2013, 22584.
24. J. Hao, S. A. Studenikin, M. Cocivera, “Transient photoconductivity properties of tungsten oxide thin filmsprepared by spray pyrolysis”, Journal of Applied Physics, 90, 2001, 5064.
25. Y.B. Li, Y. Bando, D. Golberg, K. Kuras, “WO3 nanorods/nanobelts synthesized via physical vapor deposition process” Chemical Physics Letters, 367, 2003, 214.
26. A. Kuzmin, J. Purans, E. Cazzanelli, C. Vinegoni and G. Mariotto, “X-ray diffraction, extended x-ray absorption fine structure and Raman spectroscopy studies of WO3 powders and (1-x) WO3-y·xReO2 mixtures”, Journal of Applied Physics, 84, 1998, 5515.
27. J. R. Platt, “Electrochromism, a Possible Change of Color Producible in Dyes by an Electric Field”, The Journal of Chemical Physics, 34, 1961, 862.
28. B. W. Faughnan, R. S. Crandall, P. M. Heyman, “Electrochromism in WO3 Amorphous Films”, RCA Review, 36, 1975, 177.
29. S. H. Lee, R. Deshpande, P. A. Parilla, K. M. Jones, B. To, A. H. Mahan, A. C. Dillon, “Crystalline WO3 Nanoparticles for Highly ImprovedElectrochromic Applications”, Advanced Materials, 18, 2006, 763.
30. C. C. Liao, F. R. Chen, J. J. Kai, “Annealing effect on electrochromic properties of tungsten oxide nanowires”, Solar Energy Materials and Solar Cells, 91, 2007, 1258.
31. S. Balaji, Y. Djaoued, A. S.Albert, R. Ferguson and R. Bruning, “Hexagonal Tungsten Oxide Based Electrochromic Devices: Spectroscopic Evidence for the Li Ion Occupancy of Four-Coordinated Square Windows”, Chemistry of Materials, 21, 2009, 1381.
32. M. Wu, X. Lin, L. Wang, W. Guo, Y. Wang, J. Xiao, A. Hagfeldt and T. Ma, “In Situ Synthesized Economical Tungsten Dioxide Imbedded in Mesoporous Carbon for Dye-Sensitized Solar Cells As Counter Electrode Catalyst”, The Journal of Physical Chemistry C, 115, 2011, 22598.
33. Y. T. Hsieh, U. S. Chen, S. H. Hsueh, M. W. Huang and H. C. Shih, “Rapid formation of tungsten oxide nanobundles with controllable morphology”, Applied Surface Science, 257, 2011, 3504.
34. 陳為峰,“以化學法製備電致變色氧化鎳薄膜之研究”,逢甲大學化學工程學系博士論文,2006年,p.35。
35. M. Anik, “Effect of concentration gradient on the anodic behavior of tungsten”, Corrosion Science, 48, 2006, 4158.
36. J. Wang, E. Khoo, P. S. Lee and J. Ma, “Controlled Synthesis of WO3 Nanorods and Their Electrochromic Properties in H2SO4 Electrolyte”, The Journal of Physical Chemistry C, 2009, 113, 9655.
37. J. Li , J. Zhang , Y. Qian, “Surfactant-assisted synthesis of bundle-like nanostructures with well-aligned Te nanorods”, Solid State Sciences, 10, 2008, 1549.
38. H. Wang ,P. Fang , Z. Chen, S. Wang, “Structural and optical characterization of CdS nanorods synthesized by a PVA-assisted solvothermal method”, Journal of Alloys and Compounds, 461, 2008, 418-422.
39. G. Cheng, J. Wang, X. Liu and K. Huang, “Self-assembly Synthesis of Single-Crystalline Tin Oxide Nanostructures by a Poly(acrylic acid)-Assisted Solvothermal Process”, The Journal of Physical Chemistry B, 110, 2006, 16208.
40. L. E. Greene, M. Law, D. H. Tan, M. Montano, J. Goldberger, G. Somorjai, and P. Yang, “General Route to Vertical ZnO Nanowire Arrays Using Textured ZnO Seeds”, Nano Letters, 5, 1231 (2005).
41. Y. Li, M. Guo, M. Zhang, X. Wang, “Hydrothermal synthesis and characterization of TiO2 nanorod arrays on glass substrates”, Material Research Bulletin, 44, 2009, 1232.
42. Q. Xiang, G. F. Meng, H. B. Zhao, Y. Zhang, H. Li, W. J. Ma, and J. Q. Xu, J. “Au Nanoparticle Modified WO3 Nanorods with Their Enhanced Properties for Photocatalysis and Gas Sensing”, The Journal of Physical Chemistry C, 114, 2010, 2049.
43. L. Vayssieres, K. Keis, S.E. Lindquist and A. Hagfeldt, “Purpose-Built Anisotropic Metal Oxide Material: 3D Highly Oriented Microrod Array of ZnO”, The Journal of Physical Chemistry B, 105, 2001, 3350.
44. Z. Jiao, X. Wang, J. Wang, L. Ke, H. V. Demir, T. W. Koh and X. W. Sun, “Efficient synthesis of plate-like crystalline hydrated tungsten trioxide thin films with highly improved electrochromic performance”, Chemical Communications, 48, 2012, 365.
45. Y. S. Lin, H. T. Chen, J. Y. Lai, “Electrochromic performance of PECVD-synthesized WOxCy thin films on flexible PET/ITO substrates for flexible electrochromic devices”, Thin Solid Films, 518, 2009, 1377.
46. P.V. Ashrit, G. Bader, V.V. Truong, “Electrochromic properties of nanocrystalline tungsten oxide thin films”, Thin Solid Films, 320, 1998, 324.
47. C.C. Liao, F.R. Chen, J.J. Kai, “Electrochromic properties of nanocomposite WO3 films”, Solar Energy Materials and Solar Cells, 91, 2007, 1282.
48. J. R. M. Neto, R. M. Torresi, S. I. C. Torresi, “Electrochromic behavior of WO3 nanoplate thin films in acid aqueous solution and a protic ionic liquid”, Journal of Electroanalytical Chemistry,765, 2016, 111.
49. J. Liu, X. Huang, K.M. Sulieman, F. Sun, X. He, “Solution-based growth and optical properties of self-assembled monocrystalline ZnO ellipsoids”, The Journal of Physical Chemistry B, 110, 2006, 10612.
50. F.A. Harraz, “Polyethylene glycol-assisted hydrothermal growth of magnetite nanowires: synthesis and magnetic properties”, Physica E, 40, 2008, 3131.
51. Z. Li, Y. Xiong, Y. Xie, “Selected-control synthesis of ZnO nanowires and nanorods via a PEG-assisted route”, Inorganic Chemistry, 42, 2003, 8105.
52. M. Remskar, J. Kovac, M. Virsek, M. Mrak, A. Jesih, A. Seabaugh, “W5O14 nanowires”, Advanced Functional Materials, 17, 2007, 1974.
53. H. Zhou, Y. Shi, Q. Dong, Y. Wang, C. Zhu, L. Wang, N. Wang, Y. Wei, S. Tao, T. Ma, “Interlaced W18O49 nanofibers as a superior catalyst for the counter electrode of highly efficient dye sensitized solar cells”, Journal of Materials Chemistry A, 2, 2014, 4347.
54. G. Xi, S. Ouyang, P. Li, J. Ye, Q. Ma, N. Su, H. Bai, C. Wang, “Ultrathin W18O49 nanowires with diameters below 1 nm: synthesis, near-infrared absorption, photoluminescence, and photochemical reduction of carbon dioxide”, Angewandte Chemie International Edition, 51, 2012, 2395.
55. D. Chen, L. Ge, L. Yin, H. Shi, D. Yang, J. Yang, R. Zhang, G. Shao, “Solvent-regulated solvothermal synthesis and morphology-dependent gas-sensing performance of low-dimensional tungsten oxide nanocrystals”, Sensors and Actuators B: Chemical, 205, 2014, 391.
56. C.H. Lu, M.H. Hon, C.Y. Kuan, I.C. Leu, “Preparation of WO3 nanorods by a hydrothermal method for electrochromic device”, Japanese Journal of Applied Physics, 53, 2014, 06JG08.
57. J. Wang, E. Khoo, P. S. Lee and J. Ma, “Synthesis, Assembly, and Electrochromic Properties of Uniform Crystalline WO3 Nanorods”, The Journal of Physical Chemistry C, 112, 2008, 14306.
58. Z. Jiao, X. Wang, J. Wang, L. Ke, H.V. Demir, T.W. Koh, X.W. Sun, “Efficient synthesis of plate-like crystalline hydrated tungsten trioxide thin films with highly improved electrochromic performance”, Chemical Communications, 48, 2012, 365.
59. K. Huang, Q. Pan, F. Yang, S. Ni and D. He, “Growth and field emission of tungsten oxide nanotip arrays on ITO glass substrate”, Applied Surface Science, 253, 2007, 8923.
60. Y. Qin, X. Li, F. Wang and M. Hu, “Solvothermally synthesized tungsten oxide nanowires/nanorods for NO2 gas sensor applications”, Journal of Alloys and Compounds, 509, 2011, 8401.
61. J. Liu, S. Yu, W. Zhu and X. Yan, “Oxygen vacancy-enhanced visible light-driven photocatalytic activity of TiO2 sphere-W18O49 nanowire bundle heterojunction”, Applied Catalysis A: General, 500, 2015, 30.
62. A. Danine, L. Cojocaru, C. Faure, C. Olivier, T. Toupance, G. Campet and A. Rougier, “Room Temperature UV treated WO3 thin films for electrochromic devices on paper substrate”, Electrochimica Acta, 129, 2014, 113.
63. Z. Lou, Q. Gu, L. Xu, Y. Liao and C. Xue, “Surfactant-Free Synthesis of Plasmonic Tungsten Oxide Nanowireswith Visible-Light-EnhancedHydrogen Generation from AmmoniaBorane”, Chemistry - An Asian Journal, 10, 2015, 1291.
64. X. Chang, S. Sun, Z. Li, X. Xu and Y. Qiu, “Assembly of tungsten oxide nanobundles and their electrochromic properties”, Applied Surface Science, 257, 2011, 5726.
65. D. Chatzikyriakou, N. Krins, B. Gilbert, P. Colson, J. Dewalque, J. Denayer, R. Cloots and C. Henrist, “Mesoporous amorphous tungsten oxide electrochromic films: a Raman analysis of their good switching behavior Electrochim”, Electrochimica Acta, 137, 2014, 75.
66. H. Qu, X. Zhang, L. Pan, Z. Gao, L. Ma, J. Zhao and Y. Li, “One-pot preparation of crystalline-amorphous double-layer structured WO3 films and their electrochromic properties Electrochim”, Electrochimica Acta, 148, 2014 , 46.
67. C. H. Lu, M. H. Hon, C. Y. Kuan and I. C. Leu, “A complementary electrochromic device based on W18O49 nanowire arrays and Prussian blue thin films”, RSC Advances, 6, 2016 , 1913.
68. J. Wang, P. S. Lee, J. Ma, “One-Pot Synthesis of Hierarchically Assembled Tungsten Oxide (Hydrates) Nano/Microstructures by a Crystal-Seed-Assisted Hydrothermal Process”, Crystal Growth and Design, 9, 2009, 2293.
69. C. Santato, M. Odziemkowski, M. Ulmann, J. Augustynski, “Crystallographically Oriented Mesoporous WO3 Films: Synthesis, Characterization, and Applications”, Journal of the American Chemical Society, 123, 2001, 10639.
70. C. Fu, C. Foo, P. S. Lee, “One-step facile electrochemical preparation of WO3/graphenenanocomposites with improved electrochromic properties”, Electrochimica Acta, 117, 2014, 139.
71. Y. Gui and D. J. Blackwood, “A Self-Assembled Two-Layer StructuredWO3/TiO2-x Mixed Film with Improved Electrochromic Capacities”, Journal of The Electrochemical Society, 160, 2013, E130.
72. D. Ma, H. Wang, Q. Zhang and Y. Li, “Self-weaving WO3 nanoflake films with greatly enhanced electrochromic performance”, Journal of Materials Chemistry, 22, 2012, 16633.
73. M. Deepa, M. Kar, S.A. Agnihotry, “Electrodeposited tungsten oxide films: annealing effects on structure and electrochromic performance”, Thin Solid Films, 468, 2004, 32.
74. 74. S. Park, H.W. Shim, C. W. Lee, H. J. Song, J. C. Kim, and D. W. Kim, “High-power and long-life supercapacitive performance of hierarchical, 3-D urchin-like W18O49 nanostructure electrodes”, Nano Research, 9, 2016, 633.
校內:2021-07-31公開