簡易檢索 / 詳目顯示

研究生: 盧志豪
Lu, Chih-Hao
論文名稱: 氧化鎢奈米材料製備及其應用於電致變色元件之研究
Study of tungsten oxide nanomaterials for electrochromic devices applications
指導教授: 洪敏雄
Hon, Min-Hsiung
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 81
中文關鍵詞: 電致變色六方晶相氧化鎢奈米棒奈米線陣列互補式元件
外文關鍵詞: electrochromic, WO3 nanorods, W18O49 nanowire arrays, hydrothermal, solvothermal
相關次數: 點閱:125下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於環保意識的抬頭,使得智慧型節能的材料與技術獲得重視,電致變色材料的應用是近年來廣泛被學術界研究的一項節能光學元件技術,它可以被應用在建築節能管理系統與汽車玻璃上。智慧型玻璃在時尚感與節能等方面的應用前景受到了愈來愈多的關注。在變色材料的選擇上,與目前使用的非晶相與單斜晶相氧化鎢相比,六方晶相氧化鎢因其優異的結晶特性、特殊的穿隧結構以及結合奈米化所獲得的高比表面積等特性,被廣泛認為是具應用性之新世代電致變色材料。
    本研究利用鎢酸鈉與氯化鈉混合水溶液為前驅物,自行設計壓力釜以水熱法合成氧化鎢奈米棒。研究中探討氯化鈉結構指向劑(capping agent)添加量對成長氧化鎢奈米棒之影響。發現添加5.4wt%氯化鈉可以得到均勻氧化鎢奈米棒結構。另外,發現固定鎢酸鈉4.7wt%、成長時間24hr、反應溫度180℃,滴定氯化氫控制pH值,可以分別獲得氧化鎢奈米棒束狀結構或均勻分開棒狀粉末;於XRD與TEM分析中得知合成之氧化鎢為六方晶體結構具c軸面[0002]優選成長方向;於BET分析中發現合成時間18hr之氧化鎢奈米棒擁有最高的比表面積值,此外成功的利用溶液蒸發自組裝的方式沉積氧化鎢奈米棒於ITO玻璃上,於電致變色著色態呈現深藍色且擁有極低光穿透率。
    此外,透過鎢金屬薄膜輔助水熱法成長氧化鎢奈米棒陣列。由XRD與FE-SEM的分析結果顯示,藉由水熱法在200 oC進行8 h的水熱反應,透過鎢薄膜提供成核的位置且利用氯化鈉作為結構指向劑,可以獲得平均直徑22nm,長度240nm的單斜晶相氧化鎢奈米棒陣列。製備的電致變色元件於0.1V的驅動電壓下作用10s獲得最大對比度在632.8nm波段達到41.2%。
    此外,利用溶熱法在不需要晶種層輔助的情況下直接於基材上成長少見的W18O49奈米線陣列,透過聚乙二醇(PEG)當作結構指向劑進而控制材料的尺寸並透過PEG的添加量合成奈米棒陣列來探討其成長機制,以其組裝的電致變色元件擁有高對比度(49.64%在632.8nm)、高電致變色壽命穩定度(>3000 CV cycles),以及快速的響應速率,其著色態時間為7.9s,去色態為1.4s。
    最後製備互補式電致變色元件,期望能夠將元件的性能最大化。實驗以六氯化鎢作為前驅物,利用溶熱法製備非化學計量比W18O49奈米線陣列,並藉由成長時間的參數探討奈米線形成機制以獲得均勻高比表面積的形貌,其電致變色元件的響應速率於著色態時間為10.8s,去色態為3.1s。其優異的結果歸因於高比表面積、特殊的穿隧結構以及特殊的非化學計量比特性。結合電鍍法製備普魯士藍做為對電極,更大幅的提升互補式元件的優勢,其對比度在632.8nm波段可達59.05%以及快速的響應速率,分別是著色態時間為6.9s,去色態為1.2s。突破了單一電致變色層的效能,使得互補式元件更具競爭性。

    In this study, novel hexagonal WO3 nanorods were successfully prepared. The effects of pH and the amount of NaCl capping agent on the morphology of the WO3 nanorods were investigated. Uniform and regularly aligned WO3 nanorod films can be achieved by self-assembly in a drop coating process. Moreover, the electrochromic devices based on WO3 nanorods display a deep blue color and have a low transmittance (<2%) in the colored state.
    Transparent crystalline tungsten oxide (WO3) nanorod arrays as electrochromic layer were directly prepared on fluorine-doped tin oxide (FTO) coated glasses via a facile tungsten film-assisted hydrothermal process using an aqueous tungsten hexachloride solution. The nanowire arrays show an excellent electrochromic property in contrast and response time.
    W18O49 nanowire arrays as effective electrochromic working electrodes were fabricated on seed-free FTO glasses through a facile solvothermal process. Uniform monoclinic W18O49 nanowire arrays can be obtained at 180oC for 5 h. In the assembled electrochromic device the W18O49 nanowire array films show a fast response and switching time, extracted for from 50% transmittance change of 10.8 s for coloration (tc) and 3.1 s for bleaching (tb), which surpasses current traditional devices using monoclinic tungsten oxide (WO3) as the electrochromic material. The reasons can be attributed to their large specific surface area, special tunnel structure and non-stoichiometry characteristics. A complementary electrochromic device combining the W18O49 nanowire arrays with Prussian blue film shows a higher optical contrast (59.05% at 632.8 nm) and a faster switching response with a coloration time of 6.9 s and a bleaching time of 1.2 s, superior to the single layer W18O49 nanowire device. The complementary device with excellent electrochromic performance demonstrates a great potential for practical application.

    目錄 摘要 I 英文延伸摘要(EXTENDED ABSTRACT) III 誌謝 IX 目錄 X 表目錄 XII 圖目錄 XIII 中英文名詞與符號對照表 XVIII 第一章 緒論 1 1-1簡介 1 第二章 理論基礎與文獻回顧 6 2-1變色材料 6 2-2 電致變色元件之變色原理與元件組成 8 2-3 氧化鎢電致變色材料 11 2-4 互補式電致變色元件 17 第三章 實驗方法與步驟 19 3-1實驗藥品與材料 20 3-2 水熱法壓力釜設備 22 3-3 合成六方晶相氧化鎢奈米棒 23 3-3-1 配置合成氧化鎢奈米棒前驅物 23 3-3-2改變酸鹼值環境 23 3-3-3改變氯化鈉添加比例 23 3-4 Sol-gel法製備氧化鎢晶種層 23 3-5 濺鍍法製備鎢膜薄晶種層 24 3-6 鎢薄膜輔助水熱法成長氧化鎢奈米棒陣列結構 24 3-7 溶熱法直接於FTO玻璃成長W18O49奈米棒陣列 24 3-8電鍍法製備普魯士藍薄膜用於互補式電致變色元件 24 3-9 材料分析與元件特性分析 25 3-9-1 X光繞射(XRD)分析 25 3-9-2 掃描式電子顯微鏡(SEM)分析 25 3-9-3穿透式電子顯微鏡(TEM)分析 26 3-9-4比表面積測試儀(BET)分析 26 3-9-5紫外光/可見光光譜分析儀 (UV/Vis spectroscopy) 27 3-9-6電化學特性分析 27 第四章 結果與討論 29 4-1以水熱法製備新穎六方晶相氧化鎢奈米棒 29 4-1-1 pH值對成長氧化鎢奈米結構之影響與微結構分析 30 4-1-2氯化鈉對成長氧化鎢奈米結構之影響 33 4-1-3溶液蒸發自組裝方式於ITO玻璃上沉積奈米棒以構成薄膜 38 4-2 Sol-gel法製備氧化鎢薄膜輔助成長氧化鎢奈米棒陣列 41 4-3鎢金屬薄膜輔助成長氧化鎢奈米棒陣列 45 4-3-1以濺鍍法製備鎢金屬薄膜 46 4-3-2鎢金屬薄膜輔助成長氧化鎢奈米棒陣列與微結構分析 46 4-3-3鎢金屬薄膜輔助成長氧化鎢奈米棒陣列之電致變色性能 48 4-4溶熱法製備W18O49奈米線陣列 49 4-4-1 直接於基材成長W18O49奈米線陣列 49 4-4-2 W18O49奈米線陣列之微結構分析 50 4-4-3直接於FTO玻璃成長W18O49奈米棒/奈米線陣列結構之電致變色性能 54 4-5 W18O49奈米線陣列/普魯士藍互補式電致變色元件 58 4-5-1製備非化學計量比氧化鎢奈米線陣列與普魯士藍膜層 58 4-5-2非化學計量比氧化鎢奈米線陣列微結構分析 59 4-5-3非化學計量比氧化鎢奈米線陣列/普魯士藍互補式元件電致變色性能分析 62 第五章 結論 68 第六章 參考文獻 70 附錄 79   表目錄 Table 2-1 Comparison of three chromism materials 8 Table 2-2 Comparison of optical property under different heat reaction temperatures. 16 Table 2.3 Comparison of various electrochromic materials[34]. 18 Table 3-1 The chemicals used in this study 20 Table 4-1 Surface area values of tungsten oxide nanostructure for different hydrothermal reation times 38   圖目錄 Fig. 1-1 Smart windows used in buildings with bleaching state (left) and coloration state (right) [1]. 2 Fig. 1-2 Smart windows used in airplane. 4 Fig. 1-3 Smart windows used in car[2]. 4 Fig. 2-1 A schematic of electrochromic device. 11 Fig. 2-2 Unit cell of crystalline tungsten oxide. 13 Fig. 2-3 SEM and TEM images. 15 Fig. 2-4 FESEM image of WO3 nanowires. 15 Fig. 2-5 (A) The structure of h-WO3 with c axis perpendicular to the plane. (B) The structure of h-WO3 with c axis parallel to the plane. The figure also shows various Li intercalation sites possible in h-WO3 (hexagonal and square window, trigonal cavity). 17 Fig. 3-1 The flow chart of experiment for tungsten oxide nanomaterials and 19 their fabrication of the electrochromic devices. 19 Fig. 3-2 The optical images of the autoclave containing the stainless parts and Teflon parts. 22 Fig. 4-1 SEM images of hydrothermal products synthesized at pH (a) 0.1, (b) 1.0, (c)2.0, and (d)3.0 30 Fig. 4-2 XRD pattern of WO3 nanorods synthesized via a hydrothermal process at 180℃ for 24 h. 31 Fig.4-3 SEM images of hydrothermal products synthesized with (a) 0 wt%, (b) 2.7wt%, (c) 5.4 wt%, and (d) 10.8 wt% of NaCl. 33 Fig.4-4 XRD patterns of hydrothermal products synthesized with (a) 0 wt%, (b) 2.7 wt%, (c) 5.4 wt%, and (d) 10.8 wt% of NaCl. 34 Fig.4-5 (a), (b) TEM, (c) HRTEM images and (d) SAED pattern of hydrothermal products synthesized with 5.4 wt% of NaCl. 35 Fig.4-6 SEM images of hydrothermal products synthesized with different hydrothermal reation times. (a) 3hr, (b) 6hr, (c) 12hr, (d) 18hr and (e) 24hr. …………………………………………………………………………..37 Fig.4-7 A schematic of drop coating with tungsten oxide nanorods. 39 Fig.4-8 SEM image of WO3 nanorod after drop coating on ITO glass by using different solvents in the suspension. (a) alcohol, (b) acetone and (c) DI water. 40 Fig.4-9 Color changes of the WO3 nanorod film: (a) the as-prepared film, (b) coloration at -2.5 V and (c) the transmittance spectra of the WO3 nanorod film recorded at -2.5V and +2.5 V. 41 Fig.4-10 SEM image of sol-gel WO3 thin film. 42 Fig.4-11 SEM image of solvothermal WO3 nanorod arrays. 42 Fig.4-12 (A) XRD of sol-gel WO3 thin film ; (B) XRD pattern of solvothermal WO3 nanorod arrays. 43 Fig. 4-13 Products of solvothermal synthesis. 44 Fig. 4-14 A schematic of tungsten oxide nano structure growth mechanism by seed layer assisted solvothermal reation. 45 Fig. 4-15 (a) OM images of W thin film deposited on FTO substrates in a chamber with a pressure of ~15 mtorr for 20mins. (b) OM images of W seed film on FTO glass after hydrothermal process. FESEM images of tungsten oxide nano structures synthesized on sputtered W film seed-coated FTO substrate. (c) top view, (d)cross-section. (e) hydrothermal grown for 8h at 200oC without NaCl. (f) XRD patterns of bare FTO glass and WO3 nanorod array prepared with NaCl. 47 Fig. 4-16 (a): Transmittance spectra of the bare FTO, W film coated on FTO and FTO with nanorod array WO3 film. (b): Switching time characteristics for nanorod array film measured at -0.1 V to 0.1V at 632.8 nm. ……………………………………………………………………………49 Fig.4-17 FESEM images of tungsten oxide nanorod/nanowire network arrays film deposited on FTO substrates by the solvothermal reaction at 180oC for 6hr with (a) 0 wt%, (b)1 wt%, (c) 3wt%, (d) 6wt% and (e) 10wt% PEG ……………………………………………………………………………..51 Fig.4-18 XRD patterns of tungsten oxide nanorod/nanowire network arrays synthesized via a solvothermal process with different ratio of PEG. 52 Fig.4-19 (a) Low-magnification TEM image, (B) higher-magnification TEM image showing the tungsten oxide nanowire growth with 6 wt% PEG, and (C) HRTEM images of the as-synthesized tungsten oxide nanowire. The inset in Figure 2B shows the SAED pattern taken from the nanowire. 53 Fig.4-20 A schematic illustration for the formation process of the tungsten oxide nanorod/nanowire under different solvothermal conditions. 54 Fig.4-21 (a) Photograph of bleached state electrochromic device after applying potential -3V for 5s. (b) Photograph of colored state electrochromic device after applying potential 3V for 5s. (c)transmittance spectra for the electrochromic device in the colored and bleached states. 55 Fig.4-22 C-V curves of the tungsten oxide nanowire arrays for the 3000 cycles and measured in LiClO4/PMMA/PC solution with a sweep rate of 100 mV s-1. 56 Fig.4-23 (a) Switching time characteristics for tungsten oxide nanorod network arrays film (WNRA) measured at -3 V to 3V at 632.8 nm.(b) Switching time characteristics for tungsten oxide nanowire network arrays film ( WNWA) measured at -0.1 V to 0.1V at 632.8 nm. 57 Fig.4-24 XRD patterns of (a) FTO substrate, (b) as-prepared W18O49 nanowire array 59 film after the solvothermal method at 180oC for 5h. 59 Fig.4-25 FESEM images of W18O49 nanowire arrays on FTO substrate via solvothermal synthesis at 180 ℃ for (a)0.5, (b)1, (c)2.5, and (d)5 h. 60 Fig.4-26 (a) and (b) FESEM images of W18O49 nanowire arrays on FTO substrate. (c) TEM image and (d) High resolution TEM image of a scraped W18O49 nanowire (NBDP as an insect). 61 Fig.4-27 A schematic of complementary device with the tungsten oxide nanowire and Prussian blue as the electrochromic layer. 62 Fig.4-28 (a) Photograph of bleached state electrochromic device after applying potential +3V for 10s. (b) Photograph of colored state electrochromic device after applying a potential a of -3V for 10s. (c) Transmittance spectra for the electrochromic device in the colored and bleached states. 63 Fig.4-29 Switching time characteristics for W18O49 nanowire arrays film measured at -3 V to 3V at 632.8 nm. 64 Fig.4-30 (a) Photograph of bleached state complementary electrochromic device after applying a potential of +3V for 10s. (b) Photograph of colored state electrochromic device after applying a potential of -3V for 10s. (c) Transmittance spectra for the electrochromic device in the colored and bleached states. 65 Fig.4-31 Switching time characteristics for W18O49 nanowire arrays film/Prussian blue measured at -3 V to 3V at 632.8 nm. 66 Fig.4-32 C-V curves of the complementary device for the different cycles measured in LiClO4/PMMA/PC solution with a sweep rate of 100 mV s-1. ……………………………………………………………………………67

    1. E. S. Lee, D. L. DiBartolomeo and S. E. Selkowitz, “Electrochromic Windows for Commercial Buildings: Monitored Results from a Full-Scale Testbed”, ACEEE Summer Study on Energy Efficiency in Buildings, 2000, 3241.
    2. http://www.tintable.com.tw/aboutus/company-profile.htm.
    3. M. Deepa, A. G. Joshi, A. K. Srivastava, S. M. Shivaprasad, and S. A. Agnihotryz. “Electrochromic Nanostructured Tungsten Oxide Films by Sol-gel: Structure and Intercalation Properties”, Journal of The Electrochemical Society, 153, 2006, C365.
    4. D. R. Bloomquist and R. D. Willett, “Thermochromic phase transitions in transition metal salts”, Coordination Chemistry Reviews, 47, 1982, 125.
    5. Y. Hirshberg, “Photochromie dans la serie de la bianthrone”, Comptes Rendus Academy Science, Paris, 231, 1950, 903.
    6. 鄧耀宗,“變色窗技術發展與節能效益”,化工技術,第八卷,第六期,2000年6月。
    7. R. S. Crandall, P. J. Wojtowicz, and B. W. Faughnan, “Theory and measurement of the change in chemical potential of hydrogen in amorphous HxWO3 as a function of the stoichiometric parameter x”, Solid State Communications, 18, 1976, 1409.
    8. http://sageglass.com/technology/how-it-works/.
    9. D. T. Gillaspie, R. C. Tenent and A. C. Dillon, “Metal-oxide films for electrochromic applications: present technology and future directions”, Journal of Materials Chemistry, 2010, 20, 9585.
    10. S. H. Baeck, K. S. Choi, T. F. Jaramillo, G. D. Stucky, E. W. Mcfarland, “Enhancement of photocatalytic and electrochromic properties of electrochemically fabricated mesoporous WO3 thin films”, Advanced Materials, 15, 2003, 1269.
    11. M. Feng, A. L. Pan, H. R. Zhang, Z. A. Li, F. Liu, H. W. Liu, D. X. Shi, B. S. Zou, H. J. Gao, “Strong photoluminescence of nanostructured crystalline tungsten oxide thin films”, Applied Physics Letters, vol.86, 2005, 141901.
    12. I. Turyan, U. O. Krasovec, B. Orel, T. Saraidorov, R. Reisfeld, D. Mandler, ““Writing–Reading–Erasing” on Tungsten Oxide Films Using the Scanning Electrochemical Microscope”, Advanced Materials, 12, 2000, 330.
    13. J. L. Solis, S. Saukko, L. Kish, C.G. Granqvist, V. Lantto, “Semiconductor gas sensors based on nanostructured tungsten oxide”, Thin Solid Films, 391, 2001, 255.
    14. E. Rossinyol, A. Prim, E. Pellicer, J. Arbiol, F. H. Ramirez, F. Peiro, A. Cornet, J. R. Morante, L. A. Solovyov, B. Tian, T. Bo, D. Zhao, “synthesis and Characterization of Chromium-Doped Mesoporous Tungsten Oxide for Gas Sensing Applications”, Advanced Functional Materials, 17, 2007, 1801.
    15. C. Trimble, M. DeVries, J. S. Hale, D. W. Thompson, T. E. Tiwald, J. A. Woollam, “Infrared emittance modulation devices using electrochromic crystalline tungsten oxide, polymer conductor, and nickel oxide”, Thin Solid Films, 355, 1999, 26.
    16. J. H. Yoon, S. R. Jang, R. Vittal, J. Lee, and K. J. Kim, “TiO2 nanorods as additive to TiO2 film for improvement in the performance of dye-sensitized solar cells”, Journal of Photochemistry and Photobiology A, 180, 2006, 184.
    17. J. Zhang, J. p. Tu, G. h. Du, Z. M. Dong, Y. S. Wu, L. Chang, D. Xie, G. F. Cai, and X. L. Wang, “Ultra-thin WO3 nanorod embedded polyaniline composite thin film: Synthesis and electrochromic characteristics”, Solar Energy Materials and Solar Cells, 114, 2013, 31.
    18. F. Zheng, M. Zhang, and M. Guo, “Controllable preparation of WO3 nanorod arrays by hydrothermal method”, Thin Solid Films, 534, 2013, 45.
    19. F. Zheng, H. Lu, M. Guo, and M. Zhang, “Effect of substrate pre-treatment on controllable synthesis of hexagonal WO3 nanorod arrays and their electrochromic properties”, CrystEngComm, 15, 2013, 5828.
    20. Z. W. Pan, Z. R. Dai, and Z. L. Wang, “Nanobelts of Semiconducting Oxides”, Science, 291, 2001, 1947.
    21. Z. R. Dai, J. L. Gole, J. D. Stout, and Z. L. Wang, “Tin Oxide Nanowires, Nanoribbons, and Nanotubes”, The Journal of Physical Chemistry B, 106, 2002, 1274.
    22. S. Li, M. Samy, E. Shall, “Synthesis and characterization photochromic molybdenum and tungsten oxide nanoparticles”, NanoStructured Materials, 12, 1999, 215.
    23. F. Amano, E.Ishinaga, A. Yamakata, “Effect of Particle Size on the Photocatalytic Activity of WO3 Particles for Water Oxidation”, The Journal of Physical Chemistry C, 117, 2013, 22584.
    24. J. Hao, S. A. Studenikin, M. Cocivera, “Transient photoconductivity properties of tungsten oxide thin filmsprepared by spray pyrolysis”, Journal of Applied Physics, 90, 2001, 5064.
    25. Y.B. Li, Y. Bando, D. Golberg, K. Kuras, “WO3 nanorods/nanobelts synthesized via physical vapor deposition process” Chemical Physics Letters, 367, 2003, 214.
    26. A. Kuzmin, J. Purans, E. Cazzanelli, C. Vinegoni and G. Mariotto, “X-ray diffraction, extended x-ray absorption fine structure and Raman spectroscopy studies of WO3 powders and (1-x) WO3-y·xReO2 mixtures”, Journal of Applied Physics, 84, 1998, 5515.
    27. J. R. Platt, “Electrochromism, a Possible Change of Color Producible in Dyes by an Electric Field”, The Journal of Chemical Physics, 34, 1961, 862.
    28. B. W. Faughnan, R. S. Crandall, P. M. Heyman, “Electrochromism in WO3 Amorphous Films”, RCA Review, 36, 1975, 177.
    29. S. H. Lee, R. Deshpande, P. A. Parilla, K. M. Jones, B. To, A. H. Mahan, A. C. Dillon, “Crystalline WO3 Nanoparticles for Highly ImprovedElectrochromic Applications”, Advanced Materials, 18, 2006, 763.
    30. C. C. Liao, F. R. Chen, J. J. Kai, “Annealing effect on electrochromic properties of tungsten oxide nanowires”, Solar Energy Materials and Solar Cells, 91, 2007, 1258.
    31. S. Balaji, Y. Djaoued, A. S.Albert, R. Ferguson and R. Bruning, “Hexagonal Tungsten Oxide Based Electrochromic Devices: Spectroscopic Evidence for the Li Ion Occupancy of Four-Coordinated Square Windows”, Chemistry of Materials, 21, 2009, 1381.
    32. M. Wu, X. Lin, L. Wang, W. Guo, Y. Wang, J. Xiao, A. Hagfeldt and T. Ma, “In Situ Synthesized Economical Tungsten Dioxide Imbedded in Mesoporous Carbon for Dye-Sensitized Solar Cells As Counter Electrode Catalyst”, The Journal of Physical Chemistry C, 115, 2011, 22598.
    33. Y. T. Hsieh, U. S. Chen, S. H. Hsueh, M. W. Huang and H. C. Shih, “Rapid formation of tungsten oxide nanobundles with controllable morphology”, Applied Surface Science, 257, 2011, 3504.
    34. 陳為峰,“以化學法製備電致變色氧化鎳薄膜之研究”,逢甲大學化學工程學系博士論文,2006年,p.35。
    35. M. Anik, “Effect of concentration gradient on the anodic behavior of tungsten”, Corrosion Science, 48, 2006, 4158.
    36. J. Wang, E. Khoo, P. S. Lee and J. Ma, “Controlled Synthesis of WO3 Nanorods and Their Electrochromic Properties in H2SO4 Electrolyte”, The Journal of Physical Chemistry C, 2009, 113, 9655.
    37. J. Li , J. Zhang , Y. Qian, “Surfactant-assisted synthesis of bundle-like nanostructures with well-aligned Te nanorods”, Solid State Sciences, 10, 2008, 1549.
    38. H. Wang ,P. Fang , Z. Chen, S. Wang, “Structural and optical characterization of CdS nanorods synthesized by a PVA-assisted solvothermal method”, Journal of Alloys and Compounds, 461, 2008, 418-422.
    39. G. Cheng, J. Wang, X. Liu and K. Huang, “Self-assembly Synthesis of Single-Crystalline Tin Oxide Nanostructures by a Poly(acrylic acid)-Assisted Solvothermal Process”, The Journal of Physical Chemistry B, 110, 2006, 16208.
    40. L. E. Greene, M. Law, D. H. Tan, M. Montano, J. Goldberger, G. Somorjai, and P. Yang, “General Route to Vertical ZnO Nanowire Arrays Using Textured ZnO Seeds”, Nano Letters, 5, 1231 (2005).
    41. Y. Li, M. Guo, M. Zhang, X. Wang, “Hydrothermal synthesis and characterization of TiO2 nanorod arrays on glass substrates”, Material Research Bulletin, 44, 2009, 1232.
    42. Q. Xiang, G. F. Meng, H. B. Zhao, Y. Zhang, H. Li, W. J. Ma, and J. Q. Xu, J. “Au Nanoparticle Modified WO3 Nanorods with Their Enhanced Properties for Photocatalysis and Gas Sensing”, The Journal of Physical Chemistry C, 114, 2010, 2049.
    43. L. Vayssieres, K. Keis, S.E. Lindquist and A. Hagfeldt, “Purpose-Built Anisotropic Metal Oxide Material: 3D Highly Oriented Microrod Array of ZnO”, The Journal of Physical Chemistry B, 105, 2001, 3350.
    44. Z. Jiao, X. Wang, J. Wang, L. Ke, H. V. Demir, T. W. Koh and X. W. Sun, “Efficient synthesis of plate-like crystalline hydrated tungsten trioxide thin films with highly improved electrochromic performance”, Chemical Communications, 48, 2012, 365.
    45. Y. S. Lin, H. T. Chen, J. Y. Lai, “Electrochromic performance of PECVD-synthesized WOxCy thin films on flexible PET/ITO substrates for flexible electrochromic devices”, Thin Solid Films, 518, 2009, 1377.
    46. P.V. Ashrit, G. Bader, V.V. Truong, “Electrochromic properties of nanocrystalline tungsten oxide thin films”, Thin Solid Films, 320, 1998, 324.
    47. C.C. Liao, F.R. Chen, J.J. Kai, “Electrochromic properties of nanocomposite WO3 films”, Solar Energy Materials and Solar Cells, 91, 2007, 1282.
    48. J. R. M. Neto, R. M. Torresi, S. I. C. Torresi, “Electrochromic behavior of WO3 nanoplate thin films in acid aqueous solution and a protic ionic liquid”, Journal of Electroanalytical Chemistry,765, 2016, 111.
    49. J. Liu, X. Huang, K.M. Sulieman, F. Sun, X. He, “Solution-based growth and optical properties of self-assembled monocrystalline ZnO ellipsoids”, The Journal of Physical Chemistry B, 110, 2006, 10612.
    50. F.A. Harraz, “Polyethylene glycol-assisted hydrothermal growth of magnetite nanowires: synthesis and magnetic properties”, Physica E, 40, 2008, 3131.
    51. Z. Li, Y. Xiong, Y. Xie, “Selected-control synthesis of ZnO nanowires and nanorods via a PEG-assisted route”, Inorganic Chemistry, 42, 2003, 8105.
    52. M. Remskar, J. Kovac, M. Virsek, M. Mrak, A. Jesih, A. Seabaugh, “W5O14 nanowires”, Advanced Functional Materials, 17, 2007, 1974.
    53. H. Zhou, Y. Shi, Q. Dong, Y. Wang, C. Zhu, L. Wang, N. Wang, Y. Wei, S. Tao, T. Ma, “Interlaced W18O49 nanofibers as a superior catalyst for the counter electrode of highly efficient dye sensitized solar cells”, Journal of Materials Chemistry A, 2, 2014, 4347.
    54. G. Xi, S. Ouyang, P. Li, J. Ye, Q. Ma, N. Su, H. Bai, C. Wang, “Ultrathin W18O49 nanowires with diameters below 1 nm: synthesis, near-infrared absorption, photoluminescence, and photochemical reduction of carbon dioxide”, Angewandte Chemie International Edition, 51, 2012, 2395.
    55. D. Chen, L. Ge, L. Yin, H. Shi, D. Yang, J. Yang, R. Zhang, G. Shao, “Solvent-regulated solvothermal synthesis and morphology-dependent gas-sensing performance of low-dimensional tungsten oxide nanocrystals”, Sensors and Actuators B: Chemical, 205, 2014, 391.
    56. C.H. Lu, M.H. Hon, C.Y. Kuan, I.C. Leu, “Preparation of WO3 nanorods by a hydrothermal method for electrochromic device”, Japanese Journal of Applied Physics, 53, 2014, 06JG08.
    57. J. Wang, E. Khoo, P. S. Lee and J. Ma, “Synthesis, Assembly, and Electrochromic Properties of Uniform Crystalline WO3 Nanorods”, The Journal of Physical Chemistry C, 112, 2008, 14306.
    58. Z. Jiao, X. Wang, J. Wang, L. Ke, H.V. Demir, T.W. Koh, X.W. Sun, “Efficient synthesis of plate-like crystalline hydrated tungsten trioxide thin films with highly improved electrochromic performance”, Chemical Communications, 48, 2012, 365.
    59. K. Huang, Q. Pan, F. Yang, S. Ni and D. He, “Growth and field emission of tungsten oxide nanotip arrays on ITO glass substrate”, Applied Surface Science, 253, 2007, 8923.
    60. Y. Qin, X. Li, F. Wang and M. Hu, “Solvothermally synthesized tungsten oxide nanowires/nanorods for NO2 gas sensor applications”, Journal of Alloys and Compounds, 509, 2011, 8401.
    61. J. Liu, S. Yu, W. Zhu and X. Yan, “Oxygen vacancy-enhanced visible light-driven photocatalytic activity of TiO2 sphere-W18O49 nanowire bundle heterojunction”, Applied Catalysis A: General, 500, 2015, 30.
    62. A. Danine, L. Cojocaru, C. Faure, C. Olivier, T. Toupance, G. Campet and A. Rougier, “Room Temperature UV treated WO3 thin films for electrochromic devices on paper substrate”, Electrochimica Acta, 129, 2014, 113.
    63. Z. Lou, Q. Gu, L. Xu, Y. Liao and C. Xue, “Surfactant-Free Synthesis of Plasmonic Tungsten Oxide Nanowireswith Visible-Light-EnhancedHydrogen Generation from AmmoniaBorane”, Chemistry - An Asian Journal, 10, 2015, 1291.
    64. X. Chang, S. Sun, Z. Li, X. Xu and Y. Qiu, “Assembly of tungsten oxide nanobundles and their electrochromic properties”, Applied Surface Science, 257, 2011, 5726.
    65. D. Chatzikyriakou, N. Krins, B. Gilbert, P. Colson, J. Dewalque, J. Denayer, R. Cloots and C. Henrist, “Mesoporous amorphous tungsten oxide electrochromic films: a Raman analysis of their good switching behavior Electrochim”, Electrochimica Acta, 137, 2014, 75.
    66. H. Qu, X. Zhang, L. Pan, Z. Gao, L. Ma, J. Zhao and Y. Li, “One-pot preparation of crystalline-amorphous double-layer structured WO3 films and their electrochromic properties Electrochim”, Electrochimica Acta, 148, 2014 , 46.
    67. C. H. Lu, M. H. Hon, C. Y. Kuan and I. C. Leu, “A complementary electrochromic device based on W18O49 nanowire arrays and Prussian blue thin films”, RSC Advances, 6, 2016 , 1913.
    68. J. Wang, P. S. Lee, J. Ma, “One-Pot Synthesis of Hierarchically Assembled Tungsten Oxide (Hydrates) Nano/Microstructures by a Crystal-Seed-Assisted Hydrothermal Process”, Crystal Growth and Design, 9, 2009, 2293.
    69. C. Santato, M. Odziemkowski, M. Ulmann, J. Augustynski, “Crystallographically Oriented Mesoporous WO3 Films:  Synthesis, Characterization, and Applications”, Journal of the American Chemical Society, 123, 2001, 10639.
    70. C. Fu, C. Foo, P. S. Lee, “One-step facile electrochemical preparation of WO3/graphenenanocomposites with improved electrochromic properties”, Electrochimica Acta, 117, 2014, 139.
    71. Y. Gui and D. J. Blackwood, “A Self-Assembled Two-Layer StructuredWO3/TiO2-x Mixed Film with Improved Electrochromic Capacities”, Journal of The Electrochemical Society, 160, 2013, E130.
    72. D. Ma, H. Wang, Q. Zhang and Y. Li, “Self-weaving WO3 nanoflake films with greatly enhanced electrochromic performance”, Journal of Materials Chemistry, 22, 2012, 16633.
    73. M. Deepa, M. Kar, S.A. Agnihotry, “Electrodeposited tungsten oxide films: annealing effects on structure and electrochromic performance”, Thin Solid Films, 468, 2004, 32.
    74. 74. S. Park, H.W. Shim, C. W. Lee, H. J. Song, J. C. Kim, and D. W. Kim, “High-power and long-life supercapacitive performance of hierarchical, 3-D urchin-like W18O49 nanostructure electrodes”, Nano Research, 9, 2016, 633.

    無法下載圖示 校內:2021-07-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE