| 研究生: |
楊薪樺 Yang, Xin-Hua |
|---|---|
| 論文名稱: |
複數連續小波轉換函數應用於基樁非破壞檢測之研究 The Study of Non-Destructive Test of Pile Using Complex Continuous Wavelet Transform Function |
| 指導教授: |
倪勝火
Ni, Sheng-Huoo |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 216 |
| 中文關鍵詞: | 基樁 、非破壞檢測 、音波回音法 、時頻分析 、複數連續小波轉換 、複數小波 |
| 外文關鍵詞: | Pile, non-destructive test, sonic echo method, time-frequency analysis, complex continuous wavelet transform, complex wavelet |
| 相關次數: | 點閱:114 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
非破壞檢測技術之發展已歷時多年,其檢測技術、設備與規範皆已日趨完善,對於土木工程中樁基礎品質之檢測佔有一席之地。常見的訊號處理方式為小波轉換技術,本研究針對長徑比為20(包含一根完整樁,五根缺陷樁)、32.5與40之無樁帽與含樁帽基樁進行音波回音法試驗,並將所得之訊號進行複數連續小波轉換,藉由時頻分析法進行基樁完整性評估並比較各種方法之優劣,更從相角之微小變化尋找潛藏缺陷,同時探討土壤之圍束效應對於應力波於樁身傳遞之影響。對於小波轉換所使用之函數至今仍無一定標準,為提高分析結果之準確率,構思一套標準流程進行分析,並根據不同性質之無樁帽及含樁帽基樁,找尋最適合分析之頻率範圍及函數,以供後人研究參考。研究結果顯示:complex Gaussian小波函數,對於無樁帽與含樁帽基樁最合適之小波參數為(p=2),與周暐翔(2016)之研究結果相符合,complex Morlet小波函數對於無樁帽基樁最合適之小波參數為(fb=0.5, fc=1),含樁帽基樁則為(fb=2, fc=0.5);前述之小波函數樁長評估結果幾近相等,整體誤差小於5%;藉由相角圖之微小訊號變化,即可檢測出基樁本身或周圍阻抗之變化,同時也影響著訊號分析之結果。
In recent years, the technique of wavelet transform has been widely used in signal processing in different fields, including non-destructive testing(NDT) of pile foundations. In addition, using time-frequency analysis to analyse time-domain data, from sonic echo(SE) method, can also evaluate the pile integrity effectively. The purpose of this study is about using complex continuous wavelet transform(CCWT) to estimate the pile length and impedance changes of large-scale and in-situ piles, ratio of slenderness are 20, 32.5, 40, by analyzing the time-frequency analysis. In order to increase the accuracy, conceiving a set of standard processes to find the most appropriate analysis frequency and parameter of function for the piles.
The results show that using the most suitable complex wavelet function for analysis can effectively evaluate different types of foundation piles, the analysis results are almost equal, and the overall pile length error results are less than 5%. Beside, the phase angle diagram can compensate for the disadvantage that the phase spectrogram cannot see the tiny reflected signals.
1.王志坤(2008)。「基於小波振幅頻譜和複小波相位頻譜的高分辨率層序劃分」,石油學報,第29卷,第6期,第865-869頁。
2.成禮智、郭漢偉(2005)。「小波與離散變換理論及工程實踐」,清華大學出版社有限公司,第13-23頁。
3.李青鋒、繆協興、徐金海(2007)。「連續複小波變換在工程檢測數據處理中的應用」,中國礦業大學學報,第36卷,第1期,第23-26頁。
4.李允仲(2009)。「音波回音法應用於基樁完整性檢測之實驗研究」,碩士論文,國立成功大學土木工程研究所。
5.林明勳、廖述濤(2003)。「無樁帽單樁與含樁帽群樁之非破壞檢測案例研究」,臺灣公路工程,第30卷,第6期,第2-18頁。
6.周暐翔(2016)。「複數連續小波轉換應用於基樁完整性檢測之研究」,碩士論文,國立成功大學土木工程研究所。
7.倪勝火、廖述濤(1999)。「基樁之檢測與評估」,第一屆公共工程非破壞檢測技術研討會,第166-215頁。
8.倪勝火、羅國峰、黃菘愷(1999)。「基樁完整性之品質檢驗」,土木工程非破壞檢測研討會論文集,第1-37頁。
9.倪勝火、羅國峯(2001)。「小波轉換法應用於基樁音波回應法之分析研究」,中華民國非破壞檢測協會,第19卷,第1期,第4-15頁。
10.胡昌華、李國華、周濤(2008)。「基於MATLAB 7. X的系統分析與設計-小波分析(第三版)」,西安電子科技大學出版社,第5-18頁。
11.黃烟宏(2006)。「連續小波轉換應用於基樁完整性檢測之研究」,碩士論文,國立成功大學土木工程研究所。
12.楊子彤(2017)。「複數小波轉換於評估基樁長度之研究」,成功大學土木工程學系碩士論文。
13.楊玉章(2017)。「應用離散小波轉換及複數連續小波轉換於基樁完整性檢測之研究」,博士論文,國立成功大學土木工程研究所。
14.盧家鋒(2013)。「醫學訊號分析原理與MATLAB程式應用實作」,
檢自http://www.ym.edu.tw/~cflu/CFLu_course_matlabsig.html。
15.賴勇裕(2017)。「複數小波轉換於偵測預力樁長度之案例研究」,碩士論文,國立成功大學土木工程研究所。
16. Addison, P.S., and Watson, J.N. (2002). “Low-oscillation complex wavelets.” Journal of Sound and Vibration, Vol. 254, No. 4, pp. 733-762.
17. Bolt, B.A. (1993). Earthquake and Geological Discovery, Scientific American Library, New York.
18. Das, B.M., and Ramana, G.V. (2011). Principles of Soil Dynamics, C.L. Engineering, Second Edition, pp. 56-73.
19. Davis, A.G., and Dunn, C.S. (1974). “From theory to field experience with the nondestructive vibration testing of piles.” Proceedings of the Institution of Civil Engineers, Part 2, Vol. 57, pp. 571-593.
20. Daubechies, I. (1988). “Orthonormal bases of compactly supported wavelets.” Communications on pure and applied mathematics, Vol. 41, No. 7, pp. 909-996.
21. Fourier, J.B.J. (1807). “On the propagation of heat in solid bodies.” Memoir, read before the Class of the Instut de France.
22. Gabor, D. (1946). “Theory of communication. Part 1: The analysis of information.” Journal of the Institution of Electrical Engineers-Part III: Radio and Communication Engineering, Vol. 93, No. 26, pp. 429-441.
23. Gibbs, H.J., and Holtz, W.G. (1957). “Research on Determining the Density of Sands by Spoon Penetration Testing.” Head of the Special Investigation and Research Section, Earth Laboratory Branch, Bureau of Reclamation, Denver Federal Center, Denver, Colorado, U.S.A, pp.35-39.
24. Goupillaud, P., Grossmann, A., and Morlet, J. (1984). “Cycle-octave and related transforms in seismic signal analysis.” Geoexploration, Vol. 23, No. 1, pp. 85-102.
25. Jiang, X., Ma, Z.J., and Ren, W.X. (2012). “Crack detection from the slope of the mode shape using complex continuous wavelet transform.” Computer-Aided Civil and Infrastructure Engineering, Vol. 27, pp. 187-201.
26. Kramer, S.L. (1996). Geotechnical Earthquake Engineering, Prentice-Hall Internayopnal Series in Mechanics, First Edition, pp. 143-183.
27. Park, H.C., and Kim, D.S. (2006). “Non-destructive pile integrity test using HWAW method.” Key Engineering Materials, Vol. 321-323, pp. 363-366.
28. Steinbach, J., and Vey, E. (1975). “Caisson evaluation by stress wave propagation method.” Journal of Geotechnical Engineering Division, ASCE, Vol. 101, No. GT4, pp. 361-387.
29. Ni, S.H., Yang, Y.Z., Tsai, P.H., and Chou, W.H. (2017). “Evaluation of pile defects using complex continuous wavelet transform analysis.” NDT&E International, Vol. 87, pp. 50-59.
30. Terzaghi, K., Peck R.B., and Mesri, G. (1996). Soil Mechanics in Engineering Practice, Third Edition, John Wiley & Sons Inc., p. 59-65.
31. TNO Building and Construction Research. (1997). “Theoretical Background, and Sonic Integrity Testing.” Foundation Pile Diagnostic System: Sonic Integrity Testing. Netherland.
32. Misiti, M., Misiti, Y., Oppenheim, G., and Poggi, J.M. (2006). Wavelet Toolbox: for Use with MATLAB.
33. Yeh, P.L., and Liu, P.L. (2008). “Application of the wavelet transform and the enhanced fourier spectrum in the impact echo test.” NDT&E International, Vol. 41, No. 5, pp. 382-394.