簡易檢索 / 詳目顯示

研究生: 陳怡靜
CHEN, I-Ching
論文名稱: 氫能社會之複合生命週期評估
A Composite Life Cycle Assessment of Hydrogen Society
指導教授: 福島康裕
Yasuhiro FUKUSHIMA
學位類別: 碩士
Master
系所名稱: 工學院 - 環境工程學系
Department of Environmental Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 75
中文關鍵詞: 臺灣氫能社會氫能技術複合生命週期評估運輸部門
外文關鍵詞: Composite LCA, Hydrogen technologies, Transportation sector, Taiwanese hydrogen society
相關次數: 點閱:131下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於氫能源具有下列多項優點:可降低對化石燃料的依賴性、可集中處理能源生產過程所造成的環境衝擊、可將氫能源用於能源轉換裝置(例如燃料電池)等,目前已成為極具發展潛力之替代能源載體之一。
    就環境觀點而言,氫能源之不同生產階段所產生環境衝擊應納入計算。雖然目前已有許多文獻探討氫能生產及使用之相關議題,然而如何達成對環境友善之氫能社會的綜合評估方法仍尚待建構。因此,本研究的目的為提供決策者一個綜合評估方法,即複合生產及使用技術所需之策略性評估,藉此可做為未來氫能社會之規劃依據。
    一個未來氫能社會所需之適當的氫氣量,是取決於於生命週期觀點所評估之環境衝擊結果。在本研究中,氫能之生產曲線(Production curve)、使用曲線(Utilization curve)及衝擊曲線(Impact curve)被定義:生產曲線是由各種氫能生產技術(x軸)之累積產量及環境衝擊(y軸)所構成,而使用曲線則由各種設備之累積氫氣需求量(x軸)和可降低之環境衝擊潛能(y軸)構成。藉由加總生產及使用曲線,可形成一衝擊曲線。此衝擊曲線可顯示在某氫能利用量下之淨環境衝擊量。
    案例分析利用本研究建構之方法,來評估台灣氫能使用之運輸系統於溫室氣體排放量的改變。於此案例可求得最大環境衝擊量、必然可達污染減量之氫氣使用量,以及最大汙染減量潛能。
    在本研究中,此複合性生命週期評估方法被建立用以提供決策者在引進氫能科技所需之策略性評估,並提供研究者發展新科技的評估方法,來達成效率及環境效益之提升,與評估平臺之回饋效應的可能性。
    藉由收集更多氫能相關技術之數據,我們可藉此建立一個氫能分析的評估平臺。也就是,利用不同的標準及限制,藉此評估出未來最佳可行之氫能社會。

    The use of hydrogen as alternative energy carrier has been receiving attentions due to its various advantages: ex. breakaway from dependency on fossil fuels, decentralized energy systems for secure supply and with less transportation, centralization of emissions of pollutants at the hydrogen production stage, and the availability of efficient energy conversion devices such as fuel cells. From environmental point of view, the impacts induced by emissions and consumption at different life cycle stages of hydrogen should be taken into consideration. Although there is a wide spectrum of growing literature exploring different possible production and utilization pathways of hydrogen, a comprehensive analysis method on achieving environmentally- friendly hydrogen society is still absent.
    Therefore, the objective of this study is to present an assessment method that allows decision-makers analyze consequences of introduction of related technologies in a strategic manner when designing the future hydrogen society. The method needs to allow assessment of a composite of production and utilization technologies that build up the envisioned hydrogen society.
    Using the novel methodology termed composite life cycle assessment, a possible future hydrogen society with appropriate hydrogen amounts based on a chosen set of technologies will be assessed from environmental life cycle perspectives. First, Production and Utilization curves are constructed by accumulating impacts associated with a technology over hydrogen supply and demand respectively. Each technology makes up one segment in the curves, taking resource availability and service demand into account. Next, the two curves are added over envisioned hydrogen utilization to synthesize an Impact curve.
    Case studies on assessment of changes in greenhouse gas emission induced by hydrogen-based transportation systems in Taiwan are conducted by using the methodology presented. The results of maximum environmental impact hydrogen, utilization amount of absolute emission reduction and maximum emission reduction were calculated.
    The composite life cycle assessment method is developed to allow decision-makers conduct strategic analyses on aware choice of hydrogen technologies. The presented case studies demonstrate the use of methodology, and shows possibility of feedback on target efficiencies and consequential environmental benefits to the researchers developing the technologies assessed.
    By collecting more data on wider variety of hydrogen related technologies, an assessment platform for hydrogen platform can be constructed. It is recommended that such a platform be constructed to make the most of the technological assets generated as a result of research activities. As a result, the platform enables optimization of possible future hydrogen society using various criteria and constraints.
    Keywords: Composite LCA, Hydrogen technologies, Taiwanese hydrogen society, Transportation sector 

    ABSTRACT I 中文摘要 III ACKNOWLEDGMENT V TABLE OF CONTENTS VI FIGURE INDEX VIII TABLE INDEX X CHAPTER 1 INTRODUCTION 1 1.1 Preface 1 1.2 Motivation 8 1.3 Objective 10 1.4 Thesis structure 11 CHAPTER 2 METHODOLOGY 12 2.1 Life cycle assessment (LCA) 12 2.2 Construction of composite LCA methodology 16 2.2.1 Development of production curve (P curve) 19 2.2.2 Development of utilization curve (U curve) 20 2.2.3 Development of impact curve (I curve) 23 2.3 Indicators of composite LCA methodology 27 CHAPTER 3 CASE STUDIES 29 3.1 Background description 29 3.2 Transportation system based on hydrogen derived from renewable energy in Taiwan 29 3.2.1 Goal and scope definition 29 3.3.2 Estimation on hydrogen production 30 3.2.3 Estimation on hydrogen utilization 49 3.2.4 Demonstration of composite life cycle assessment of hydrogen society 53 3.3 Transportation system based on hydrogen in Taiwan 59 3.3.1 Goal and scope definition 59 3.3.2 Demonstration of composite life cycle assessment of hydrogen society 59 Chapter 4 Result and discussion 65 4.1 Result and discussion on case studies 65 4.2 Result and discussion on methodology 68 CHAPTER 5 CONCLUSION 70 REFERENCE 72

    1. Thomas E. Drennen and Jennifer E. Rosthal, Pathways to a Hydrogen Future: ELSEVIER.
    2. European Commission, World energy technology outlook- WETO H2, Editor. 2006.
    3. Gregorio Marban, Teresa Valdes-Solis, Towards the hydrogen economy? International Journal of Hydrogen Energy, 2007. 32: p. 1625-1367.
    4. William McDowall, M.E., Towards a sustainable hydrogen economy: A multi-criteria sustainability appraisal of competing hydrogen futures. International Journal of Hydrogen Energy, 2007. 32: p. 4611-4626.
    5. Meng Ni, Michael K.H. Leung, K. Sumathy, DennisY.C. Leung, Potential of renewable hydrogen production for energy supply in Hong Kong. International Journal of Hydrogen Energy 31. 31: p. 1404-1412.
    6. Volker H. Hoffmann, Multi-objective decision making under uncertainty in chemical process design, in Swiss Federal Institute of Technology Zürich, Ph.D. Dissertation 2001.
    7. Alessandro Tugnolia, G.L., Valerio Cozzania, Sustainability assessment of hydrogen production by steam reforming. International Journal of Hydrogen Energy, 2008. 33: p. 4345-4357.
    8. C. Koroneos, A.D., G. Roumbas, N. Moussiopoulos, Life cycle assessment of hydrogen fuel production processes. International Journal of Hydrogen Energy 2004. 29: p. 1443-1450.
    9. Mikhail Granovskii, I.D., Marc A. Rosen, Life cycle assessment of hydrogen fuel cell and gasoline vehicles International Journal of Hydrogen Energy 2006. 31: p. 337-352.
    10. Henrikke Baumann, Anne-Marie Tillman, The Hitch Hiker's Guild to LCA. 2004: Studenlitteratur AB.
    11. Pamela L. Spath, M.K.M., Life Cycle Assessment of Hydrogen Production via Natural Gas Steam Reforming, National Renewable Energy Laboratory, Editor. 2001.
    12. Energy Statistic Handbook 2007, Bureau of energy MOEA, ROC.
    13. Department of Household Registration, M.O.I., Taiwan. http://www.ris.gov.tw/version96/stpeqr00.html.
    14. Energy and Resource Laboratory of Industrial Technology Research Institute
    and National Central University ERL and NCU, “Assessment of wind power development potential in Taiwan.” Technical Rep., Energy Commission of the Ministry of Economic Affairs, Taipei, Taiwan
    15. Patel, M.R., Wind and solar power systems :design, analysis, and operation. 2006: Boca Raton, FL :Taylor & Francis.
    16. Nordex N54 Technical description, http://www.wind.com.au/N54technicaldescription.htm
    17. Tsang-Jung Chang et. al., Assessment of wind characteristics and wind turbine characteristics in Taiwan. Renewable Energy 2003. 28: p. 851-871.
    18. Johanna Ivy, N.M. Summary of Electrolytic Hydrogen Production. 2004.
    19. Mann, A.M.a.M., Potential for Hydrogen Production from Key Renewable Resources in the United States, National Renewable Energy Laboratory Technical Report, Editor. 2007.
    20. Yuh-Ming Lee, Y.-E.T., Development and Life-Cycle Inventory Analysis of Wind Energy in Taiwan. Journal of Energy Engineering, 2008. 134(2): p. 53-57.
    21. Pamela L. Spath, M.K.M., NREL/MP-50-35404, Life cycle assessment of renewable hydrogen production via wind/electrolysis. 2004.
    22. M. Asif, T.M., R. Kelley, Life cycle assessment: A case study of a dwelling home in Scotland. Building and Environment, 2007. 42: p. 1391-1394.
    23. K.G. Harding , J.S.D., H. von Blottnitz, S.T.L. Harrison, Environmental analysis of plastic production processes: Comparing petroleum-based polypropylene and polyethylene with biologically-based poly-hydroxybutyric acid using life cycle analysis. Journal of Biotechnology 2007. 130: p. 57-66.
    24. T.E. Norgate, S.J., W.J. Rankin, Assessing the environmental impact of metal production processes. Journal of Cleaner Production, 2007. 15: p. 838-848.
    25. Chang, Y.-S., Assessment of lifecycle CO2 emission of buildings. 2002, National Cheng-Kung Univ., Taiwan.
    26. 張子文, 太陽電池應用於建築上之研究, 臺灣成功大學建築研究所碩士論文. 2004.
    27. Erik A. Alsema1, M.J.d.W.-S., Environmental Impacts of Crystalline Silicon Photovoltaic Module Production, in 13th CIRP Intern. Conf. on Life Cycle Engineering, Leuven. 2006.
    28. S. Manish, R.B., Comparison of biohydrogen production process. International Journal of Hydrogen Energy, 2008. 33: p. 279-286.
    29. 農糧署, 98年水旱田利用調整後續計畫. 2009.
    30. 臺灣電力公司,96年度電力排放係數, http://www.taipower.com.tw.
    31. Tokyo Electric Power Company (TEPCO), 2009. Sustainability Report 2008. pp. 38, http://www.tepco.co.jp/en/challenge/environ/report-e.html, <accessed on April 17, 2009>
    32. Chen, S.-P., Greenhouse Gas Emissions Induced by Ethanol Fuel Produced from Sugarcane in Taiwan, in Department of Environmental Engineering. 2008, Mater thesis, National Cheng Kung University.
    33. 交通部運輸研究所, 臺灣地區公路車輛統計,http://www.iot.gov.tw/mp.asp.
    34. Industrial Technology Research Institute mechanical engineering industry report, The average annual traveling mileage analysis in Taiwan. 2005.
    35. IPCCguideline, Chapter 3 Mobile combustion. 2006.

    下載圖示 校內:2010-08-11公開
    校外:2010-08-11公開
    QR CODE