| 研究生: |
陳冠翔 Chen, Kuan-Hsiang |
|---|---|
| 論文名稱: |
鈀膜分離氫氣之研究:滲透係數、不純物及操作最佳化 An investigation of hydrogen separation by palladium membrane: permeance, impurity and operation optimization |
| 指導教授: |
陳維新
Chen, Wei-Hsin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 能源工程國際碩博士學位學程 International Master/Doctoral Degree Program on Energy Engineering |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 英文 |
| 論文頁數: | 80 |
| 中文關鍵詞: | 氫氣分離 、鈀(Pd)膜 、真空 、田口方法 、迴歸分析 、反應曲面法(RSM) 、變異數分析(ANOVA) 、不純物 |
| 外文關鍵詞: | Hydrogen separation, Palladium (Pd) membrane, Vacuum, Taguchi method, Regression analysis, Response surface methodology (RSM), Analysis of variance (ANOVA), Impurity |
| 相關次數: | 點閱:76 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著可持續發展意識的抬頭,對氫能的需求也在逐漸增加。雖然氫能被認為是一種清潔能源,但它確實被歸類為最嚴格意義上的能源載體。與煤、石油、天然氣等傳統化石燃料相比,氫氣燃燒的產物是水(H2O)。因此,氫能可以被認為是一種可重複使用的能源。儘管氫能不符合聯合國環境規劃署(UNEP)對可再生能源的定義,因為它仍然來自化石燃料,但它可以作為可再生能源系統中的優良能源載體,從而作為可再生能源系統中一種能源儲存之選擇,因為在使用氫氣時,該過程只會排放水,並不會對環境造成危害,氫能仍然能成為能源產業無可爭議的領導者。然而,氫氣的使用通常以高純度形式使用。因此,本研究分為兩部分,第一部分討論了不同操作條件下使用鈀膜初步分離來自不同氣體混合物之氫氣,並通過統計方法分析了各因子的影響。第二部分研究了分離富氫氣體中之氫氣,並分析操作條件對氫氣分離和雜質滲透的利弊。
在本研究的第一部分,初步從產氫過程中可能產出之氣體成分中分離氫氣。實驗使用 H2、N2 和 CO2 四種不同的氣體濃度組合作為進料氣體。實驗的操作條件採用田口方法依據直角表L16(44)進行設計。對於膜分離進行氣體成分、操作溫度(320至380 °C)、總壓差(2至5 atm)和真空度(15至51 kPa)的影響之研究。逐步迴歸分析用於建立氫氣通量的預測方程式。通過變異數分析(ANOVA)分析操作因子的顯著性及影響性。滲透端的最佳氫氣通量是本研究的目標。變異數分析結果顯示,氫氣通量受氣體成分的影響最大,其次是總壓差、真空度,最小的是操作溫度。預測的最佳條件為混合氣體為75% H2 + 25% N2、操作溫度為320 °C,總壓差為5 atm,真空度為51 kPa。在這種情況下,氫氣通量為0.185 mol∙s-1∙m-2,而二階迴歸分析預測的相對誤差於7%以下。
在本研究的第二部分,本研究使用鈀膜從 H2/CO2 (90/10 vol%) 氣體混合物中分離氫氣。考慮了氫氣的溫度(320至380 °C)、總壓差(2至3.5 atm)及真空度(15至49 kPa)三個不同的操作參數,並利用中心複合設計(CCD)設計實驗。變異數分析(ANOVA) 也用於分析操作因子的重要性和適用性。滲透端的氫氣通量和二氧化碳(雜質)濃度都是本研究的目標函數。變異數分析結果顯示,三個因子對氫氣通量的影響猶大至小依序為真空度、溫度和總壓差。然而,對於CO2的滲透,因子影響性排序為總壓差>真空度>溫度。反應曲面法對最大氫氣通量和最小CO2濃度的預測與實驗接近。最大氫氣通量為 0.2163 mol∙s-1∙m-2發生於380 °C、3.5 atm 總壓差和49 kPa 真空度之操作條件下。而在320 °C、2 atm 總壓差和15 kPa 真空度的操作條件下,滲透端中最小CO2濃度為643.58 ppm。真空操作可以顯著增加氫氣滲透,但它也同時促進CO2擴散滲透過鈀膜。因此,應根據氣體產品的需求,於氫氣通量和氣體雜質之間進行折衷。
With the rising awareness of sustainable development, the demand for hydrogen energy is gradually increasing. Although hydrogen energy is considered to be a clean energy, it is really classified as an energy carrier in the strictest sense. The product of hydrogen combustion, in contrast to conventional fossil fuels such as coal, oil, natural gas, and so on, is water (H2O). As a result, hydrogen energy may be thought of as a reusable source of energy. Even though hydrogen energy does not fulfil the UN Evironment Programme (UNEP) definition of renewable energy because it is still derived from fossil fuels, it can be used as an excellent energy carrier in renewable energy systems and thus serve as another option for energy storage in renewable energy systems. Because when hydrogen is being utilised, the process will only emit water vapour and will not harm the environment. Hydrogen energy is still the undisputed leader in the energy industry. However, the use of hydrogen is usually in a high piurity form. Thus, this research is divided into two parts. The first part discusses preliminary hydrogen separation from different gas mixtures using palladium membrane with various operating conditions and analyzes the effect of the factors by statistic methods. The second part investigates the hydrogen separation from hydrogen rich gas and analyzes the pros and cons of the operating conditions to the hydrogen separation and impurities permeation.
In the first part of this study, Preliminary separation of hydrogen from the possible gas composition of hydrogen production methods. The experiments use four different gas concentration combination of H2, N2, and CO2 as the input gas. The Taguchi method is used to design the experiment's operating conditions, which is according to orthogonal array L16 (44). On membrane separation, the effects of gas composition, operation temperature (320 to 380 °C), total pressure difference (2 to 5 atm), and vacuum degree (15 to 51 kPa) are investigated. The stepwise regression analysis is employed for establishing the predictive equation of H2 flux. The significance and suitability of operating conditions are analyzed by analysis of variance (ANOVA). The optimal H2 flux at the permeate side is the goal of this study. The results of ANOVA indicate that the H2 flux is most affected by the gas composition, followed by the total pressure difference, vacuum degree and the least is the operating temperature. The predicted optimal conditions are when the gas mixture is 75% H2 + 25% N2, operating temperature is 320 °C, the pressure difference is 5 atm, and the vacuum degree is 51 kPa. In this case, the H2 flux is 0.185 mol∙s-1∙m-2. The relative error of prediction of the second order regression analysis is below 7%
In the second part of this study, This study using a palladium membrane to separate hydrogen from an H2/CO2 (90/10 vol%) gas mixture. Three different operating parameters of temperature (320 to 380 °C), total pressure difference (2 to 3.5 atm), and vacuum degree (15 to 49 kPa) on hydrogen are taken into account, and the experiments are designed utilizing a central composite design (CCD). Analysis of variance (ANOVA) is also used to analyze the importance and suitability of the operating factors. Both the H2 flux and CO2 (impurity) concentration on the permeate side are the targets in this study. The ANOVA results indicate that the influences of the three factors on the H2 flux follow the order of vacuum degree, temperature, and total pressure difference. However, for CO2 transport across the membrane, the parameters rank as total pressure difference > vacuum degree > temperature. The predictions of the maximum H2 flux and minimum CO2 concentration by the response surface methodology are close to those by experiments. The maximum H2 flux is 0.2163 mol∙s-1∙m-2, occurring at 380 °C, 3.5 atm total pressure difference, and 49 kPa vacuum degree. Meanwhile, the minimum CO2 concentration in the permeate stream is t 643.58 ppm with the operations of 320 °C, 2 atm total pressure difference, and 15 kPa vacuum degree. The operation with a vacuum can significantly intensify H2 permeation, but it also facilitates CO2 diffusion across the Pd membrane. Therefore, a compromise between the H2 flux and the impurity in the treated gas should be taken into account, depending on the requirement of the gas product.
[1] Economic UNDo, Affairs S. The Sustainable Development Goals Report 20182018.
[2] Thomas JM, Edwards PP, Dobson PJ, Owen GP. Decarbonising energy: The developing international activity in hydrogen technologies and fuel cells. Journal of Energy Chemistry. 2020;51:405-15.
[3] IEA. Hydrogen. Paris: IEA; 2020.
[4] Ahmad T, Zhang D. A critical review of comparative global historical energy consumption and future demand: The story told so far. Energy Reports. 2020;6:1973-91.
[5] Ranjekar AM, Yadav GD. Steam Reforming of Methanol for Hydrogen Production: A Critical Analysis of Catalysis, Processes, and Scope. Industrial & Engineering Chemistry Research. 2021;60(1):89-113.
[6] Chen W-H, Chen C-Y. Water gas shift reaction for hydrogen production and carbon dioxide capture: A review. Appl Energy. 2020;258:114078.
[7] Meloni E, Martino M, Ricca A, Palma V. Ultracompact methane steam reforming reactor based on microwaves susceptible structured catalysts for distributed hydrogen production. Int J Hydrogen Energy. 2021;46(26):13729-47.
[8] Khani Y, Kamyar N, Bahadoran F, Safari N, Amini MM. A520 MOF-derived alumina as unique support for hydrogen production from methanol steam reforming: The critical role of support on performance. Renewable Energy. 2020;156:1055-64.
[9] Greluk M, Rotko M, Turczyniak-Surdacka S. Enhanced catalytic performance of La2O3 promoted Co/CeO2 and Ni/CeO2 catalysts for effective hydrogen production by ethanol steam reforming. Renewable Energy. 2020;155:378-95.
[10] Kovač A, Marciuš D, Budin L. Solar hydrogen production via alkaline water electrolysis. Int J Hydrogen Energy. 2019;44(20):9841-8.
[11] Lee B, Chae H, Choi NH, Moon C, Moon S, Lim H. Economic evaluation with sensitivity and profitability analysis for hydrogen production from water electrolysis in Korea. Int J Hydrogen Energy. 2017;42(10):6462-71.
[12] Okura K, Miyazaki K, Muroyama H, Matsui T, Eguchi K. Ammonia decomposition over Ni catalysts supported on perovskite-type oxides for the on-site generation of hydrogen. RSC Adv. 2018;8(56):32102-10.
[13] Pinzón M, Romero A, de Lucas Consuegra A, de la Osa AR, Sánchez P. Hydrogen production by ammonia decomposition over ruthenium supported on SiC catalyst. Journal of Industrial and Engineering Chemistry. 2021;94:326-35.
[14] Golmakani A, Fatemi S, Tamnanloo J. Investigating PSA, VSA, and TSA methods in SMR unit of refineries for hydrogen production with fuel cell specification. Sep Purif Technol. 2017;176:73-91.
[15] Yáñez M, Ortiz A, Gorri D, Ortiz I. Comparative performance of commercial polymeric membranes in the recovery of industrial hydrogen waste gas streams. Int J Hydrog Energy. 2021;46(33):17507-21.
[16] Hashim SS, Somalu MR, Loh KS, Liu S, Zhou W, Sunarso J. Perovskite-based proton conducting membranes for hydrogen separation: A review. Int J Hydrogen Energy. 2018;43(32):15281-305.
[17] Bang G, Moon D-K, Kang J-H, Han Y-J, Kim K-M, Lee C-H. High-purity hydrogen production via a water-gas-shift reaction in a palladium-copper catalytic membrane reactor integrated with pressure swing adsorption. Chem Eng J. 2021;411:128473.
[18] Wang H, Wang M, Liang X, Yuan J, Yang H, Wang S, et al. Organic molecular sieve membranes for chemical separations. Chem Soc Rev. 2021;50(9):5468-516.
[19] Du Z, Liu C, Zhai J, Guo X, Xiong Y, Su W, et al. A Review of Hydrogen Purification Technologies for Fuel Cell Vehicles. Catalysts. 2021;11(3).
[20] Exter MJd. 3 - The use of electroless plating as a deposition technology in the fabrication of palladium-based membranes. In: Doukelis A, Panopoulos K, Koumanakos A, Kakaras E, editors. Palladium Membrane Technology for Hydrogen Production, Carbon Capture and Other Applications: Woodhead Publishing; 2015. p. 43-67.
[21] Zhu X, Li S, Shi Y, Cai N. Recent advances in elevated-temperature pressure swing adsorption for carbon capture and hydrogen production. Prog Energy Combust Sci. 2019;75:100784.
[22] Xiao J, Li C, Fang L, Böwer P, Wark M, Bénard P, et al. Machine learning–based optimization for hydrogen purification performance of layered bed pressure swing adsorption. Int J Energy Res. 2020;44(6):4475-92.
[23] Suhaimi HSM, Leo CP, Ahmad AL. Hydrogen separation using polybenzimidazole membrane with palladium nanoparticles stabilized by polyvinylpyrrolidone. Int J Energy Res. 2021;45(10):15171-81.
[24] Wu S, Liang J, Shi Y, Huang M, Bi X, Wang Z, et al. Design of interchain hydrogen bond in polyimide membrane for improved gas selectivity and membrane stability. J Membr Sci. 2021;618:118659.
[25] Xu R, He L, Li L, Hou M, Wang Y, Zhang B, et al. Ultraselective carbon molecular sieve membrane for hydrogen purification. Journal of Energy Chemistry. 2020;50:16-24.
[26] Cai L, Zhu Y, Cao Z, Li W, Li H, Zhu X, et al. Non-noble metal catalysts coated on oxygen-permeable membrane reactors for hydrogen separation. J Membr Sci. 2020;594:117463.
[27] Zhuang L, Li J, Xue J, Jiang Z, Wang H. Evaluation of hydrogen separation performance of Ni-BaCe0.85Fe0.15O3-δ cermet membranes. Ceramics International. 2019;45(8):10120-5.
[28] Odling W. On Professor Thomas Graham’s Scientific Work. Report of the Board of the Regents of the Smithsonian Institution1871. p. 177-216.
[29] Yun S, Ted Oyama S. Correlations in palladium membranes for hydrogen separation: A review. J Membr Sci. 2011;375(1):28-45.
[30] Rahimpour MR, Samimi F, Babapoor A, Tohidian T, Mohebi S. Palladium membranes applications in reaction systems for hydrogen separation and purification: A review. Chemical Engineering and Processing: Process Intensification. 2017;121:24-49.
[31] Moyo LB, Iyuke SE, Muvhiiwa RF, Simate GS, Hlabangana N. Application of response surface methodology for optimization of biodiesel production parameters from waste cooking oil using a membrane reactor. South African Journal of Chemical Engineering. 2021;35:1-7.
[32] Chelladurai SJS, K M, Ray AP, Upadhyaya M, Narasimharaj V, S G. Optimization of process parameters using response surface methodology: A review. Materials Today: Proceedings. 2020.
[33] Piri M, Sepehr E, Samadi A, Farhadi K, Alizadeh M. Application of diatomite for sorption of Pb, Cu, Cd and Zn from aqueous solutions: kinetic, thermodynamic studies and application of response surface methodology (RSM). Water Environ Res. 2021;93(5):714-26.
[34] Yuan D, Zhang C, Tang S, Wang Z, Sun Q, Zhang X, et al. Ferric ion-ascorbic acid complex catalyzed calcium peroxide for organic wastewater treatment: Optimized by response surface method. Chin Chem Lett. 2021.
[35] Abu El Hawa HW, Paglieri SN, Morris CC, Harale A, Douglas Way J. Identification of thermally stable Pd-alloy composite membranes for high temperature applications. J Membr Sci. 2014;466:151-60.
[36] Amandusson H, Ekedahl LG, Dannetun H. Hydrogen permeation through surface modified Pd and PdAg membranes. J Membr Sci. 2001;193(1):35-47.
[37] Chen W-H, Escalante J. Influence of vacuum degree on hydrogen permeation through a Pd membrane in different H2/N2 gas mixtures. Renewable Energy. 2020;155:1245-63.
[38] Chen W-H, Escalante J, Chi Y-H, Lin Y-L. Hydrogen permeation enhancement in a Pd membrane tube system under various vacuum degrees. Int J Hydrogen Energy. 2020;45(12):7401-11.
[39] Nayebossadri S, Speight JD, Book D. Hydrogen separation from blended natural gas and hydrogen by Pd-based membranes. Int J Hydrogen Energy. 2019;44(55):29092-9.
[40] Ji G, Yao JG, Clough PT, da Costa JCD, Anthony EJ, Fennell PS, et al. Enhanced hydrogen production from thermochemical processes. Energy & Environmental Science. 2018;11(10):2647-72.
[41] Budhi YW, Suganda W, Irawan HK, Restiawaty E, Miyamoto M, Uemiya S, et al. Hydrogen separation from mixed gas (H2, N2) using Pd/Al2O3 membrane under forced unsteady state operations. Int J Hydrogen Energy. 2020;45(16):9821-35.
[42] Yang J, Fan W, Bell C-M. Effect of calcination atmosphere on microstructure and H2/CO2 separation of palladium-doped silica membranes. Sep Purif Technol. 2019;210:659-69.
[43] Wang W, Pan X, Zhang X, Yang W, Xiong G. The effect of co-existing nitrogen on hydrogen permeation through thin Pd composite membranes. Sep Purif Technol. 2007;54(2):262-71.
[44] Tong J, Su L, Kashima Y, Shirai R, Suda H, Matsumura Y. Simultaneously Depositing Pd−Ag Thin Membrane on Asymmetric Porous Stainless Steel Tube and Application To Produce Hydrogen from Steam Reforming of Methane. Industrial & Engineering Chemistry Research. 2006;45(2):648-55.
[45] Chen W-H, Lin S-W, Chen C-Y, Chi Y-H, Lin Y-L. Impact of vacuum operation on hydrogen permeation through a palladium membrane tube. Int J Hydrogen Energy. 2019;44(28):14434-44.
[46] Yolcular S. Hydrogen recovery from methylcyclohexane as a chemical hydrogen carrier using a palladium membrane reactor. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects. 2016;38(14):2148-52.
[47] Liguori SI, A.; Dalena, F.; Pinacci, P.; Drago, F.; Broglia, M.; Huang, Y.; Basile. Performance and Long-Term Stability of Pd/PSS and Pd/Al2O3 Membranes for Hydrogen Separation. Membranes. 2014:143-62.
[48] Basile A, Campanari S, Manzolini G, Iulianelli A, Longo T, Liguori S, et al. Methane steam reforming in a Pd–Ag membrane reformer: An experimental study on reaction pressure influence at middle temperature. Int J Hydrogen Energy. 2011;36(2):1531-9.
[49] Okada S, Mineshige A, Kikuchi T, Kobune M, Yazawa T. Cermet-type hydrogen separation membrane obtained from fine particles of high temperature proton-conductive oxide and palladium. Thin Solid Films. 2007;515(18):7342-6.
[50] Wang L, Yoshiie R, Uemiya S. Fabrication of novel Pd–Ag–Ru/Al2O3 ternary alloy composite membrane with remarkably enhanced H2 permeability. J Membr Sci. 2007;306(1):1-7.
[51] Gennady S. Burkhanov NBG, Natalia B. Kolchugina. Palladium-Based Alloy Membranes for Separation of High Purity Hydrogen from Hydrogen-Containing Gas Mixtures. Platinum Metals. 2011:55.
[52] Liguori S, Iulianelli A, Dalena F, Pinacci P, Drago F, Broglia M, et al. Performance and Long-Term Stability of Pd/PSS and Pd/Al2O3 Membranes for Hydrogen Separation. Membranes. 2014;4(1).
[53] Roa F, Way JD. Influence of Alloy Composition and Membrane Fabrication on the Pressure Dependence of the Hydrogen Flux of Palladium−Copper Membranes. Industrial & Engineering Chemistry Research. 2003;42(23):5827-35.
[54] Su C, Jin T, Kuraoka K, Matsumura Y, Yazawa T. Thin Palladium Film Supported on SiO2-Modified Porous Stainless Steel for a High-Hydrogen-Flux Membrane. Industrial & Engineering Chemistry Research. 2005;44(9):3053-8.
[55] Lundin S-TB, Patki NS, Zhang Z, Fuerst TF, Wolden CA, Way JD. PdAu/YSZ composite hydrogen separation membranes with enhanced stability in the presence of CO. J Membr Sci. 2020;611:118371.
[56] Alaswad A, Benyounis KY, Olabi AG. Optimization Techniques in Material Processing. Reference Module in Materials Science and Materials Engineering: Elsevier; 2016.
[57] Ravi Kumar SM, Kulkarni SK. Analysis of Hard Machining of Titanium Alloy by Taguchi Method. Materials Today: Proceedings. 2017;4(10):10729-38.
[58] Freddi A, Salmon M. Introduction to the Taguchi Method. In: Freddi A, Salmon M, editors. Design Principles and Methodologies: From Conceptualization to First Prototyping with Examples and Case Studies. Cham: Springer International Publishing; 2019. p. 159-80.
[59] Prasad Babu GHV, Murthy BSN, Venkata Rao K, Adarsh Kumar K. Taguchi based optimization of process parameters in orthogonal turn milling of ASTM B139. Materials Today: Proceedings. 2017;4(2, Part A):2147-56.
[60] Saberimoghaddam A, Nozari A. An experimental and statistical model of a cyclic pressure swing adsorption column for hydrogen purification. Korean J Chem Eng. 2017;34(3):822-8.
[61] Asadzadeh F, Maleki-Kaklar M, Soiltanalinejad N, Shabani F. Central Composite Design Optimization of Zinc Removal from Contaminated Soil, Using Citric Acid as Biodegradable Chelant. Scientific Reports. 2018;8(1):2633.
[62] Sahoo P, Barman TK. 5 - ANN modelling of fractal dimension in machining. In: Davim JP, editor. Mechatronics and Manufacturing Engineering: Woodhead Publishing; 2012. p. 159-226.
[63] Wagner JR, Mount EM, Giles HF. 25 - Design of Experiments. In: Wagner JR, Mount EM, Giles HF, editors. Extrusion (Second Edition). Oxford: William Andrew Publishing; 2014. p. 291-308.
[64] Chi Y-H, Yen P-S, Jeng M-S, Ko S-T, Lee T-C. Preparation of thin Pd membrane on porous stainless steel tubes modified by a two-step method. Int J Hydrogen Energy. 2010;35(12):6303-10.
[65] Huang Y, Liu Q, Jin X, Ding W, Hu X, Li H. Coating the porous Al2O3 substrate with a natural mineral of Nontronite-15A for fabrication of hydrogen-permeable palladium membranes. Int J Hydrogen Energy. 2020;45(12):7412-22.
[66] Chen WH, Chiu IH. Transient dynamic of hydrogen permeation through a palladium membrane. Int J Hydrogen Energy. 2009;34(5):2440-8.
[67] Barreiro MM, Maroño M, Sánchez JM. Hydrogen permeation through a Pd-based membrane and RWGS conversion in H2/CO2, H2/N2/CO2 and H2/H2O/CO2 mixtures. Int J Hydrogen Energy. 2014;39(9):4710-6.
[68] Wang L, Zhang S, Liu Y. Reverse water gas shift reaction over Co-precipitated Ni-CeO2 catalysts. Journal of Rare Earths. 2008;26(1):66-70.
[69] Kian K, Woodall CM, Wilcox J, Liguori S. Performance of Pd-Based Membranes and Effects of Various Gas Mixtures on H2 Permeation. Environments. 2018;5(12).
[70] Chen W-H, Chiu G-L, Chyuan Ong H, Shiung Lam S, Lim S, Sik Ok Y, et al. Optimization and analysis of syngas production from methane and CO2 via Taguchi approach, response surface methodology (RSM) and analysis of variance (ANOVA). Fuel. 2021;296:120642.
[71] Arababadi R, Naganathan H, Saffari Pour M, Dadvar A, Parrish K, Chong O. Building stock energy modeling: Feasibility study on selection of important input parameters using stepwise regression. Energy Science & Engineering. 2021;9(2):284-96.
[72] Curreri F, Graziani S, Xibilia MG. Input selection methods for data-driven Soft sensors design: Application to an industrial process. Information Sciences. 2020;537:1-17.
[73] Badshah W, Bulut M. Model Selection Procedures in Bounds Test of Cointegration: Theoretical Comparison and Empirical Evidence. Economies. 2020;8(2).
[74] Khoshvaght H, Delnavaz M, Leili M. Optimization of acetaminophen removal from high load synthetic pharmaceutical wastewater by experimental and ANOVA analysis. Journal of Water Process Engineering. 2021;42:102107.
[75] Wang Y, Chen G, Li Y, Yan B, Pan D. Experimental study of the bio-oil production from sewage sludge by supercritical conversion process. Waste Manage (Oxford). 2013;33(11):2408-15.
[76] Guazzone F, Engwall EE, Ma YH. Effects of surface activity, defects and mass transfer on hydrogen permeance and n-value in composite palladium-porous stainless steel membranes. Catal Today. 2006;118(1):24-31.
[77] Lu H, Zhu L, Wang W, Yang W, Tong J. Pd and Pd–Ni alloy composite membranes fabricated by electroless plating method on capillary α-Al2O3 substrates. Int J Hydrogen Energy. 2015;40(8):3548-56.
[78] Arzani FA, Ribeiro Neto AC, Terra NM, Cardoso VL, Reis MHM. Influence of external mass transfer and support resistances for hydrogen permeation through composite palladium membranes. Environmental Progress & Sustainable Energy. 2021;n/a(n/a):e13692.
[79] Chen W-H, Lin C-N, Chi Y-H, Lin Y-L. Permeation characteristics of hydrogen through palladium membranes in binary and ternary gas mixtures. IJER. 2017;41(11):1579-95.
[80] Zhang J, Liu D, He M, Xu H, Li W. Experimental and simulation studies on concentration polarization in H2 enrichment by highly permeable and selective Pd membranes. J Membr Sci. 2006;274(1):83-91.
[81] He G, Mi Y, Lock Yue P, Chen G. Theoretical study on concentration polarization in gas separation membrane processes. J Membr Sci. 1999;153(2):243-58.
[82] Deng L, Feng X, Ren G-K, Wang J, Luo J, Song J. Effects of structural and concentration polarization on the efficiency of Pd membrane permeator. Fusion Eng Des. 2019;148:111279.
[83] Chen W-H, Hsia M-H, Chi Y-H, Lin Y-L, Yang C-C. Polarization phenomena of hydrogen-rich gas in high-permeance Pd and Pd–Cu membrane tubes. ApEn. 2014;113:41-50.
[84] Hulme J, Komaki M, Nishimura C, Gwak J. The effects of gas mixtures on hydrogen permeation through Pd–Ag/V–Ni alloy composite membrane. Current Applied Physics. 2011;11(4):972-5.
[85] Hou K, Hughes R. The effect of external mass transfer, competitive adsorption and coking on hydrogen permeation through thin Pd/Ag membranes. Journal of Membrane Science. 2002;206(1):119-30.