簡易檢索 / 詳目顯示

研究生: 曾崇育
Tseng, Chung-Yu
論文名稱: 竹桿幾何性質對於軸壓破壞強度之影響
The Influence of Bamboo Geometric Properties on the Axial Compressive Strength
指導教授: 杜怡萱
Tu, Yi-Hsuan
學位類別: 碩士
Master
系所名稱: 規劃與設計學院 - 建築學系
Department of Architecture
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 247
中文關鍵詞: 竹材挫屈幾何性質有限元素分析
外文關鍵詞: bamboo, buckling, geometric properties, Finite Element Analysis
相關次數: 點閱:102下載:22
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 竹材作為自然材料,具備了生長快速、重量輕和易加工等優點,是優良的綠色建材。臺灣本土竹材廣為應用於工藝與傳統屋舍,然而國內目前尚無竹結構設計規範,故在現代建築之應用面受到限制。若欲引進國際竹構造規範ISO-22156(2021),則需要相關試驗來探討其規定對本土竹材之適用性。本研究以此為前提,針對本土竹種刺竹進行竹桿挫屈試驗,搭配有限元素模擬,探討竹桿幾何性質對軸壓強度之影響,並與ISO設計公式和Ylinen公式比較,驗證前述公式之準確性,再根據分析與驗證結果提出公式之修正建議。
    因竹材生長的有機性,天然竹桿取樣難以直接過濾單一幾何性質變因對於軸壓強度的影響,故本研究先進行竹材料基本試驗和竹桿挫屈試驗,並以Ansys對試體進行有限元素模擬,以基本試驗校正材料參數設定,再比較挫屈試驗與模擬結果,確保模擬的可行性,最後設定控制幾何性質之虛擬竹桿進行挫屈模擬,以探討各種幾何性質對於軸壓破壞強度之影響。
    本文挫屈試驗竹桿試體之細長比介於0.6至3.0之間,大部分試體在竹節處發生挫屈破壞,推測與竹節纖維方向改變有關。竹桿軸壓強度與斷面積、慣性矩、軸向抗壓極限應力和軸向抗壓彈性模數呈現中度正相關,與細長比和弓形偏差率呈現中度負相關。與既有公式比較顯示ISO原設計公式對於竹桿軸壓強度之預測過於保守,平均強度比(試驗值/設計公式)達15.21,且低估強度的趨勢隨細長比增加而變大;Ylinen公式則有高估短桿強度,低估中長桿強度的趨勢。
    虛擬竹桿的模擬結果顯示:
    (1)錐度的影響:細長比和頂端管徑不變時,竹桿錐度越大則軸壓破壞強度越高,而ISO原設計公式對錐度較大的竹桿預測過於保守。
    (2)弓形偏差率的影響:細長比不變時,竹桿弓形偏差率越大,軸壓強度越低,且最大弓形偏差位置越靠近頂端時軸壓強度越低,而虛擬竹桿強度下降趨勢與ISO原設計公式預測之下降趨勢差異甚大。
    (3)邊界條件的影響:不同邊界束制條件的挫屈模擬結果顯示ISO原設計公式建議的有效長度係數K值偏保守。
    (4)管徑大小的影響:不同管徑的竹桿,斷面積增加對強度增加的影響較慣性矩顯著,而細長比較大的竹桿在斷面積和慣性矩增加時強度上升較短桿顯著。
    本研究提出軸壓破壞強度之修正公式,將平均強度比由15.21下降至6.88,大幅改善ISO原設計公式的保守程度,使竹結構的設計能更經濟並輕量化。

    Being a natural material, bamboo is known for its short life period, light wight and is easy to machining. Although bamboo is widely used in traditional crafts and buildings in Taiwan, it is still ignored in modern architectural materials due to the lack of related legislation. If we try to introduce ISO-22156(2021) to Taiwan, which is the widely used standard of bamboo structures, we have to conduct related experiments for verification. This study carries out the buckling test of Bambusa stenostachya Hackel, conducts Finite Element Analysis, and compares it with the formula about axial compressive strength in ISO-22156 and Ylinen’s Formula, and put forward the modified suggestions.
    It is difficult to separate the influence on axial compressive strength with a single variation because of bamboo geometric properties, so this study carries out the material and buckling tests first, and then conducts Finite Element Analysis by ANSYS to investigate the influence of bamboo geometric properties on axial compressive strength.
    The results show that bamboo poles, which slenderness ratio are between 0.6 and 3.0, mainly occurred failure with buckling. The results also show axial compressive strength is moderately positive correlated with section area, moment of inertia, axial compressive ultimate stress, and axial compressive Young’s modulus, and moderately negative correlated with slenderness ratio and bow ratio. It also shows that the original ISO formula is too conservative, with the average strength ratio (experimental value/ISO formula compression capacity) up to 15.21. Ylinen’s Formula has the trend to overestimate the strength of short poles, and underestimate longer poles.
    Simulated results of virtual bamboo poles show these points:
    1. The axial compressive strength gets higher when the tamper of the bamboo pole is larger, and the original ISO formula calculates the compression capacity of larger tamper bamboo poles more conservatively.
    2. Larger bow ratio bamboo poles have lower axial compressive strength, and also the maximum bow position near the bottom of the bamboo poles. The downtrend of strength between simulated results and the original ISO formula is largely different.
    3. The simulation of different boundary conditions shows that the original ISO formula has a conservative value of the effective length coefficient.
    4. Section area has a more significant influence on axial compressive strength than moment of inertia does. And bamboo poles with larger slenderness ratio have bigger upward trend than bamboo poles with smaller slenderness ratio when section area and moment of inertia get larger.
    Recalculate the compression capacity with the modified suggestions of this study, the mean strength ratio decreases from 15.21 to 6.88. This study greatly improves the conservative degree of the ISO formula, and makes bamboo structures get lighter and more economical.

    第一章 緒論 1 1.1 研究動機與目的 1 1.1.1 研究動機 1 1.1.2 研究目的 2 1.2 文獻回顧 3 1.3 研究方法與流程 10 1.4 章節概述 11 第二章 竹材料基本試驗 12 2.1 軸向抗壓試驗 13 2.1.1 試體規劃 13 2.1.2 試驗裝置與試驗方法 15 2.1.3 試驗結果與討論 15 2.2 徑向抗壓試驗 20 2.2.1 試體規劃 20 2.2.2 試驗裝置與試驗方法 22 2.2.3 試驗結果與討論 22 2.3 軸向抗壓與徑向抗壓試驗比較 30 2.4 含水率試驗 35 2.4.1 試體規劃 35 2.4.2 試驗方法 36 2.4.3 試驗結果與討論 38 第三章 竹桿挫屈試驗 41 3.1 試驗規劃 41 3.1.1 試體尺寸量測 41 3.1.2 試驗裝置 46 3.1.3 試驗方法 48 3.2 試驗結果與討論 51 3.2.1 破壞模式 51 3.2.2 載重-位移曲線 57 3.3 試驗結果與既有公式比較 63 3.3.1 ISO-22156(2021) 63 3.3.2 Ylinen軸壓強度預測公式 79 3.4 相關性分析 89 3.4.1 竹桿斷面積AT 90 3.4.2 竹桿慣性矩IT 91 3.4.3 弓形偏差率bo 92 3.4.4 竹桿長度L 93 3.4.5 細長比λ 94 3.4.6 軸向抗壓極限應力fc 95 3.4.7 軸向抗壓彈性模數E 96 3.4.8 相關性分析結果歸納 97 3.5 小結 98 第四章 實際試體之有限元素模擬 99 4.1 軸向抗壓試驗之有限元素模擬 99 4.1.1 模擬流程 99 4.1.2 彈性等向性(Isotropic Elastic) 103 4.1.3 塑性等向性(Isotropic Plastic) 106 4.1.4 彈性正交各向異性(Orthotropic Elastic) 110 4.1.5 塑性正交各向異性(Orthotropic Plastic) 113 4.1.6 雙模數材料(Bi-modulus) 119 4.1.7 小結 123 4.2 挫屈試驗之有限元素模擬 125 4.2.1 竹桿模型建立 125 4.2.2 模擬流程 126 4.2.3 不同材料參數之挫屈模擬結果比較 133 4.2.4 挫屈試體模擬與試驗比較 138 4.2.5 小結 153 4.3 竹節設定探討 154 4.3.1 竹節材料設定 155 4.3.2 竹節厚度 156 4.3.3 小結 157 4.4 小結 158 第五章 虛擬竹桿模型之有限元素模擬 159 5.1 錐度之影響 159 5.1.1 模型設定 159 5.1.2 分析結果 164 5.1.3 ISO錐度考量方式修正建議 169 5.2 弓形偏差率之影響 172 5.2.1 模型設定 172 5.2.2 分析結果 177 5.2.3 ISO弓形偏差考量方式建議 186 5.3 有效長度係數之影響 189 5.3.1 模型設定 189 5.3.2 分析結果 190 5.3.3 ISO有效長度係數之修正建議 194 5.4 管徑大小之影響 196 5.4.1 模型設定 196 5.4.2 分析結果 198 5.5 Ylinen公式納入錐度與弓形偏差率之修正 202 5.6 小結 209 第六章 結論與建議 212 6.1 結論 212 6.2 建議 215 參考文獻 217 附錄A 竹材料基本試驗最終破壞照片 219 附錄B 竹桿挫屈試驗最終破壞照片 231 附錄C 軸向抗壓試體密度與挫屈試體錐度計算結果 246

    1. ISO, “ISO-22156:Bamboo structures—Bamboo culms—Structural design,” 2021.
    2. 程炳璋,安南區李養打造一比一竹籠芡 重現「扛厝避水患」,2018年6月21日,https://www.chinatimes.com/realtimenews/20180621002495-260508?chdtv
    3. 游家誠,「古蹟歷史建築修復施作過程 竹材保護棚架系統之研擬與應用」,國立成功大學建築學系碩士論文,2009。
    4. Nie, Y., Wei, Y., Huang, L., Liu, Y., and Dong, F., “Influence of slenderness ratio and sectional geometry on the axial compression behavior of original bamboo columns,” Journal of Wood Science, 67, 36, 2021.
    5. Bahtiar, E. T., Malkowska, D., Trujillo, D. and Nugroho, N., “Experimental study on buckling resistance of Guadua angustifolia bamboo column,” Engineering Structures, 228, 111548, 2021.
    6. Ramful, R. and Sakuma, A., “Investigation of the effect of inhomogeneous material on the fracture mechanisms of bamboo by finite element method,” MPDI, Materials, 13, 5039, 2020.
    7. Dixon, P.,G. and Gibson, L., J., “The structure and mechanics of Moso bamboo material”, Journal of The Royal Society, Interface, 11, 20140321, 2014.
    8. Cui, J., Qin, Z., Masic, A. and Buehler, M. J., “Multiscale structural insights of load bearing bamboo: A computational modeling approach,” Journal of the mechanical behavior of biomedical materials, 107, 103743, 2020.
    9. Richard, M. J. and Harries, K. A., “Experimental buckling capacity of multiple-culm bamboo columns,” Key Engineering Materials, 517, 51-62, 2012.
    10. ISO, “ISO-22157:Bamboo structures—Determination of physical and mechanical properties of bamboo culms—Test methods,” 2019.
    11. Verbist, M., Branco, J., M. and Nunes, L., “Characterization of the mechanical performance in compression perpendicular to the grain of insect-deteriorated timber,” MPDI, Buildings, 10, 14, 2020.
    12. CEN, “EN 408:Structural timber and glued laminated timber—determination of some physical and mechanical properties,” 2003.
    13. Zahn, J., J., “Re-examination of Ylinen and other column equations,” Forest Products Laboratory Madison WI, 53705, 2398,” 1993.
    14. Candelaria, M., D., E. and Hernandez, J., Y., Jr., “Determination of the properties of bambusa blumeana using full-culm compression tests and layered tensile tests for finite element model simulation using orthotropic material modeling,” ASEAN Engineering Journal, Vol 9 No 1, 54, 2019.
    15. Morozov, E., V. and Vasiliev, V., V. “Determination of the shear modulus of orthotropic materials from off-axis tension tests,” Composite Structures, 62, 379-382, 2003.
    16. 張三酉,「竹片應用於撓曲主動空間結構之研究」,國立成功大學建築學系碩士論文,2021。

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE