簡易檢索 / 詳目顯示

研究生: 歐慧琪
Ou, Hui-Chi
論文名稱: 不溶性澱粉黃酸鹽螯合銅之溶出及電解回收研究
Release and electrolysis recovery of copper from copper-insoluble starch xanthate
指導教授: 張祖恩
Chang, Juu-En
學位類別: 碩士
Master
系所名稱: 工學院 - 環境工程學系
Department of Environmental Engineering
論文出版年: 2002
畢業學年度: 90
語文別: 中文
論文頁數: 110
中文關鍵詞: 不溶性澱粉黃酸鹽電解回收去除
外文關鍵詞: electrolysis, recovery, removal, insoluble starch xanthate
相關次數: 點閱:89下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要
    本研究使用自行合成的不溶性澱粉黃酸鹽(Insoluble Starch Xanthate,ISX)來去除溶液中之銅離子,依適當銅硫比(1:1,1:2,1:4)添加ISX 於含銅溶液中,探討在不同條件(pH 值、ORP、離子強度)下,ISX 去除銅離子之效率。此外,將生成物Cu-ISX 置於特定環境中(酸性、鹼性、氧化、高溫等狀態),搭配銅管/銅網陰極電解回收處理,並輔以液相pH、ORP、EC、金屬離子分析,固相FTIR、元素分析,期能了解溶出回收銅之效果與行為。

    去除實驗結果顯示,銅硫比1:2 時,ISX 去除銅離子效果最佳,去除效果可達100%,而低pH 值及高氧化態條件下,去除效果不佳,;離子強度則對去除效果無顯著之影響。溶出/電解回收實驗結果則顯示,高濃度氧化劑有利於銅溶出;高pH 值有利於銅管陰極回收銅(初始pH=12 時,其回收率分別為電流密度2.5mA/cm2:49.2%;電流密度5mA/cm2:74%;電流密度10mA/cm2:82.8%);低pH 及高溫條件下則銅網電解回收銅表現較佳(初始pH=2 時,其回收率分別為電流密度2.5mA/cm2:72.7%;電流密度5mA/cm2:80.4%;電流密度10mA/cm2:85.9%;控制溫度為50℃時,其回收率分別為電流密度2.5mA/cm2:52%;電流密度5mA/cm2:73.7%;電流密度10mA/cm2:83.1%)。由上述結果可知,ISX 具有特定之去除/溶出金屬離子特性,搭配電解回收處理及選擇適當操作條件,應可應用於含金屬廢水之處理及回收,而有別於傳統化學混凝沉澱程序。

    Abstract
    In this research, insoluble starch xanthate (ISX) was synthesized and was used for Cu(II) removal from aqueous solutions. Effects of initial metal ion concentration, pH, ionic strength and metal/sulfur (xanthate) molar ratio were investigated in batch modes. Results of Cu(II) removal experiments showed that the optimum Cu/sulfur molar ratio is 2. Low pH and high oxidation conditions appeared to reduce the Cu(II) removal efficiency. The ionic strength condition would not affect the performance of the Cu(II) removal process.
    Recovery of Cu from the reactants, Cu-ISX, electrolysis under specific conditions (pH, ORP, temperature and current density) was performed in order to obtain the optimum
    operating factors. Results of electrolysis experiments showed that high pH and electrolysis current density promoted Cu recovery efficiencies when column-type electrode was used (max. Cu recovery efficiency: 82.8%). Low pH, high temperature and high electrolysis current density were good for Cu recovery when net-type electrode was used (max. Cu From the above results, it was concluded that copper removal by ISX in combination with electrolysis recovery treatment could be a suitable method for solving copper-containing wastewaters and subsequent copper recovery problems.

    目錄 授權書 I 簽署人須知 II 論文合格證書Ⅲ 中文摘要Ⅳ 英文摘要Ⅴ 誌謝 Ⅵ 目錄Ⅷ 表目錄XI 圖目錄XII 第一章前言1 1-1 研究動機1 1-2 研究目的與方法2 第二章文獻回顧4 2-1 含重金屬廢水之處理處置4 2-2 Xanthate 之基本特性6 2-3 Metal -Xanthate 之化學特性1 4 2-4 Xanthate 於廢水處理之應用20 2-4-1 Xanthate 去除金屬離子2 0 2-4-2 Metal-Xanthate 錯合物溶出金屬離子23 2-5 電解回收金屬24 2-5-1 電解回收金屬之原理24 2-5-2 增加金屬回收之效率 26 2-5-3 影響電解回收重金屬的操作因素27 2-6 小結29 第三章實驗設備、材料與方法30 3-1 實驗設備及材料30 3-1-1 實驗設備30 3-1-2 實驗材料32 3-2 實驗方法33 3-2-1 Starch Xanthate 之合成33 3-2-2 去除實驗與Cu-ISX 製備35 3-2-3 溶出實驗36 3-2-4 電解回收實驗37 3-2-5 溶液之組成分析40 3-2-6 固體物之特性分析41 第四章結果與討論44 4-1 不溶性澱粉黃酸鹽對銅離子之去除44 4-1-1 ISX 元素組成分析44 4-1-2 改變銅硫比處理不同濃度之銅溶液44 4-1-3 不同pH 值對去除效果之影響45 4-1-4 不同氧化還原環境對去除效果之影響49 4-1-5 不同離子強度對去除效果之影響52 4-1-6 小結52 4-2 Cu-ISX 錯合物於不同環境條件下之溶出研究55 4-2-1 不同pH 值環境對Cu-ISX 錯合物之溶出影響55 4-2-2 不同氧化環境對Cu-ISX 錯合物之溶出研究61 4-2-3 改變溫度71 4-2-4 小結75 4-3 Cu-ISX 以電解程序溶出及回收之探討76 4-3-1 銅管電解回收76 4-3-2 銅網電解回收92 第五章結論與建議105 5-1 結論105 5-2 建議106 參考文獻107

    Ackernan P. K., Harris G. H., Klimpel R. R. and Aplan F. F. Evaluation of flotation collectors for copper sulfides and pyrite, Ø.Effect of xanthate chain length and branching .International Journal of Mineral Processing,21, 141-156, (1987).

    Chaudhari S. and Tare V. Analysis and evaluation of heavy metal uptake and release by insoluble starch xanthate in aqueous environments. Water Science Technology, 34, 161-168, (1996).

    Chaudhari S. and Tare V. Heavy metal soluble starch xanthate
    interactions in aqueous environments. Journal of Applied Polymer Science, 71, 1325-1332, (1999).

    Cheng K. Y. Controlling mechanisms of metal release from cement-based waste form in acetic acid solution . Ph. D. Dissertation, University of Cincinnati, OH, (1992).

    Dedonato P., Cases J. M., Kongolo M., Cartier A. and Rivail J. L. Stability of amylxanthate ion as a function of pH:modelling and comparision with the ethylxanthate ion. International Journal of Mineral Processing.25, 1-16, (1989).

    Hobo T. Sudl Y., Suzuki S. and Araki S. Batch and continous foam separation of copperious in water. Bunseki Kagaku.27, 104, (1978).

    Hovenkamp S. G. Sodium dithiocarbonate as a by-product in xanthating reactions, A contribution to the chemistry of viscose. Journal of Polymer Science:Part 2.341-355, (1963).

    Jawed M. and Tare V. Application of starch xanthate for cadmium removal:A comparative evaluation. Journal of Applied Polymer Science.42, 317-324, (1991).

    Leppinen J. O. Basilio C. I. And Yoon R.H. In-Situ FTIR study of Ethyl xanthate adsorption on sulfide minerals under conditions of controlled potential. International Journal of Mineral Processing.26, 259-274,(1990).

    Lin T. T., Lin C.F., Wei W. C. and Lo S. L. Mechanisms of metal stabilization in cementitious matrix:Interaction of tricalcium aluminate and copper oxide/hydroxide. Environmental Science and Technology. 27,1312-1318, (1993).

    Maillot M., Cecile J. L. and Bloise R., Stability of ethylxanthate ion in neutral and weakly acid media. Part1: Influence of pH. International Journal of Mineral Processing.13, 193-210, (1984).

    Montalti M., Fornasiero D. and Ralston J. Ultraviolet-visible spectroscopic study of the kinetics of adsorption of ethyl xanthate on pyrite. Journal of Colloid and Interface Science.173, 440-450, (1991).

    Nanjo M. and Yamasaki T. Acid decomposition of metal xanthate complexes and their stability. Bulletin of the Chemcal Society of Japan, 972-976, (1969).

    Navickis L. L., R. E. Wing, and E. B. Bagley. ISX reduces selenium count in process wastewaters. Ind. Waste, 26-30, (1979).

    Pomianowski A. and Leja J.Spectrophotometric study of xanthate and dixanthogen solution .Can. J. Chem. 41, 2219-2230, (1963).

    Popov S. R. and Vucinic D. R. The effect of copper ions and galena floatability and ethyl xanthate adsorption. Colloids and Surfaces.44,191-205, (1990).

    Scott A.C., Pitblado R. M., and Barton G. W. Experimental determination of the factors affecting zinc electrowinning efficiency. Journal of Applied Electrochemistry, 18, 120-127, (1988).

    Sheikh N. and Leja I. Precipitation and stability of copper ethyl xanthate in hot acid and alkaline solutions. J. Coll. And Inter.Sci.47, 300, (1974).

    Sparrow G., Pomianowski A. and Leja J. Soluble copper xanthate complexes. Seperation Science.12, 87-102, (1977).

    Stephane H. R. Brienne ,M. M. Volkan Bozkurt, S. R. Rao, Zhenghe Xu,Ian S.Butler, and James A. Finch. Infrared spectroscopic investigations of the stability of xanthate-mineral Interaction Products. Society for Applied
    Spectroscopy, 521-527, (1996).

    Sun Z. and Forsling W.The degradation kinetics of ethyl-xanthate as a function of pH in aqueous solution. Minerals Engineering, 10(4),389-400, (1997) .

    Tare V. and Chaudhari S. Evaluation of soluble and insoluble xanthate process for the removal of heavy metals from wastewaters. Water Research,21(9), 1109-1118, (1986).

    Tare V., Chaudhari S. and Jawed M. Comparative evaluation of soluble and insoluble xanthate process for heavy metal removal from wastewater. Water Science Technology, 26 (12), 237-246, (1992).

    Timpman R.N. and Leja J., Reactivity of xanthate and dixanthogen in aqueous of different pH. Colloid and Polymer Science, 253, 4-10, (1975).

    Winter G. Inorganic xanthates. Reviews in Inorganic
    Chemistry,2,253-342, (1980).

    王鳳英,「界面活性劑之化學構造與其物理性質之關係」,界面科學會誌,第八卷,第四期,第27-36 頁(1985)。

    事業廢棄物貯存清除處理方法與設施標準,環保法令,環保署網站
    (2002)。

    許祐銘,「黃酸鹽之合成及其對銅離子穩定效果之研究」,碩士論文,國立成功大學環境工程研究所,台南(1998)。

    陳燕雪,「正丁基黃酸鹽穩定化銅、鎳及鋅氫氧化物污泥之研究」,碩士論文,國立成功大學環境工程研究所,台南(1999)。

    黃志傑,「正丁基黃酸鹽穩定銅、鋅離子之研究」,碩士論文,國立成功大學環境工程研究所,台南(2000)。

    黃建宜,「銅與界面活性劑錯合物長期穩定性之研究」,碩士論文,國立成功大學環境工程研究所,台南(1995)。

    黃賢達,「重金屬工業廢水之泡沫分離處理」,界面科學會誌,第十卷,第一期,第28-35 頁(1987)。

    下載圖示 校內:立即公開
    校外:2002-07-17公開
    QR CODE