| 研究生: |
黃建家 Huang, Jian-Jia |
|---|---|
| 論文名稱: |
電鍍Ni-Pt薄膜應用於電流式酒精感測器與其電化學行為之研究 Study of Ni-Pt Thin Film for Amperometric Ethanol Sensor and Electrochemical Behavior |
| 指導教授: |
黃文星
Hwang, Weng-Sing |
| 共同指導教授: |
周澤川
Chou, Tse-Chuan |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 219 |
| 中文關鍵詞: | Ni-Pt薄膜 、電流式酒精感測器 、電化學觸媒 、氫氧化鎳 |
| 外文關鍵詞: | Ni-Pt thin film, amperometric Ethanol Sensor, electrochemical catalyst, Ni(OH)2 |
| 相關次數: | 點閱:92 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究使用電化學電鍍法製備Ni-Pt薄膜,以電化學技術配合其他材料分析方法針對以下四個主題進行探討:(1)Ni-Pt之電化學式電流酒精感測器的效能;(2)Ni-Pt之酒精感測的反應動力行為;(3)Ni-Pt薄膜中Ni(OH)2/NiOOH相態轉變之電化學時效性質;(4)電化學氧化還原反應與酒精氧化反應過程中Ni-Pt薄膜電極之Ni(OH)2生成效率與內部結構的關係。經由實驗結果之觀察與數據分析可獲得各部分之主要結果,分別簡述如下。
在酒精感測效能方面,在鹼性溶液中於520 mV之感測電位下隨著Pt添加量的增加,平均靈敏度呈現下降而平均應答時間則縮短。Pt的添加有助於減緩靈敏度隨時間增加而下降的現象,改善穩定性之惡化,其中70 at %Pt含量的薄膜在63天之穩定性測試期間具有相對較好的穩定性。Ni-Pt薄膜對於甲醇、葡萄糖、維他命C的選擇性不佳,會產生極大的干擾訊號。
在酒精氧化動力學方面,Pt之添加雖然沒有增進酒精氧化反應速率,卻可提高Ni(OH)2/NiOOH電化學反應速率,可加快酒精感測速率,有助於縮短應答時間。當施加電位大於0.63 V時,Ni(OH)2/NiOOH在Ni-Pt薄膜之反應速率較在Ni薄膜上快速。添加Pt可有效抑制Ni(OH)2/NiOOH反應過程中氧化物之生成及薄膜電阻的增加,可減低薄膜的電化學反應電位隨著掃描速率的增加而提高的現象,有較好的可逆性。
在Ni(OH)2/NiOOH相態轉變方面,Ni(OH)2在Ni-Pt薄膜中隨著電化學掃描的進行持續成長並轉變成β-NiOH)2,而長時間電化學氧化還原掃描會加速α-Ni(OH)2轉變為β-NiOH)2。Pt之添加會減緩α-Ni(OH)2轉變為β-NiOH)2之速率;而厚度愈厚之Ni-Pt薄膜在電化學掃描過程中會產生較多比例的α-Ni(OH)2,阻礙薄膜中β-NiOH)2之轉變,有助穩定α-Ni(OH)2。置於KOH水溶液中之時效時間愈長,有助於Ni(OH)2成長轉變為β-NiOH)2。在潮濕的O2氣氛中,H2O與O2會在薄膜中與Ni形成額外的Ni(OH)2。經過長時間的酒精氧化過程之後,薄膜中的Ni(OH)2相態為β-NiOH)2,但仍含少數的α-Ni(OH)2。Ni-Pt薄膜中的β-NiOH)2相態可穩定保存於KOH水溶液中,有助穩定β-NiOH)2,但會因潮濕空氣中H2O與O2之插入而破壞β-NiOH)2的相態,並形成α-Ni(OH)2。
在Ni(OH)2生成效率與內部結構的關係上,隨著Pt的含量增加,造成Ni原子的分散及晶格結構的改變。可發現Ni(OH)2在不同Pt含量的薄膜電極中的形成速率互不相等,Ni-Pt薄膜電極中的Ni能夠有效率地形成Ni(OH)2;而純Ni薄膜的Ni(OH)2形成效率相對較差。
In this research, Ni-Pt thin films were prepared by the electrochemical deposition method. The experiment data were analyzed and presented by electrochemical method (ex: cyclic voltammetry and linear voltammetry), XRD, SEM, ICP-MS, EQCM, WDS, nano-AEM and XAS. The experiments are divided into four part of themes including: (1) the performance of electrochemically amperometric ethanol sensor with Ni-Pt thin films; (2) the electrochemistry and reaction kinetics of sensing ethanol on Ni-Pt thin films; (3) the electrochemical aging effect on the phase transformation of Ni(OH)2/NiOOH in the Ni-Pt thin films; (4) the rate of producing Ni(OH)2 on the Ni-Pt films and structure effect of Ni-Pt thin films. The results are summarized as follows briefly.
For the performance of ethanol sensor with Ni-Pt thin films, the sensitivity decreased with the increase of Pt content of the Ni-Pt thin film in KOH solution at the applied potential of 520 mV. The response time of sensing ethanol decreased with the increase of Pt content. The addition of Pt could reduce the decline of sensitivity with time and improved the stability of sensing ethanol. In addition, the Ni-Pt thin film which contained 70 at % Pt had best stability during 63 days. The Ni-Pt presented bad selectivity toward the interferences such as methanol, glucose and vitamins C.
For kinetics behavior of sensing ethanol on Ni-Pt thin films, although the addition of Pt in Ni-Pt thin films could not aid the rate of ethanol oxidation with NiOOH. It could promote the rate for electrochemical reaction of Ni(OH)2/NiOOH and accelerate the rate of sensing ethanol further. This could help to reduce response time. The rate of Ni(OH)2/NiOOH redox reaction would be faster than that on pure Ni film at the applied potential which is more than 0.63 V. Furthermore, the oxide which may increase the resistance of the Ni films could be restrained by the addition of Pt during Ni(OH)2/NiOOH redox reaction. This could reduce the increase of the potential of Ni(OH)2/NiOOH redox reaction with the increase of scan rate.
For the phase transformation of Ni(OH)2/NiOOH in the Ni-Pt thin films, Ni(OH)2 gradually grew and concerted to β-Ni(OH)2 in the Ni-Pt thin films during cyclic voltammetry. The rate of Ni(OH)2 converting to β-Ni(OH)2 could be accelerated with long-time cyclic voltammetry of Ni(OH)2/NiOOH. The addition of Pt could reduce the rate of Ni(OH)2 converting to β-Ni(OH)2 in Ni-Pt thin films. The thicker the Ni-Pt films were, the more the films contained the amount of α-Ni(OH)2. This fact also hindered the transformation of Ni(OH)2 to β-Ni(OH)2 in the Ni-Pt thin films. These are helpful to stabilize in α-Ni(OH)2. Aging in KOH solution for a long time could assist Ni(OH)2 in transforming to β-Ni(OH)2 in Ni-Pt films. Some H2O and O2 would enter into the Ni-Pt films to form extra amount of Ni(OH)2 while aging in a humid O2 environment. After long time of ethanol oxidation, the phase of most Ni(OH)2 in the Ni-Pt films was β-Ni(OH)2 although the films still contained a little number of α-Ni(OH)2. The phase of β-Ni(OH)2 in the Ni-Pt films could be stable in KOH solution rather than in a humid O2 environment where the structure of β-Ni(OH)2 may be destroyed by H2O an O2.
For rate of producing Ni(OH)2 and structure of the films, dispersion of nickel atom and structural change arose from the addition of Pt in the films. Various producing rates of Ni(OH)2 were found in the films of different content of Pt. Ni atoms were efficiently oxidized to Ni(OH)2 in the Ni-Pt films. However, Ni atoms were inefficiently formed to Ni(OH)2 during cyclic voltammetry.
1. A. Caputi, D. P. Mooney, Gas-chromatographic determination of alcohol in wine-a collaborative study, J. Assoc. Off. Anal. Chem. 66, 1152-1157 (1983).
2. S. Pellegrino, F. S. Bruno, M. Petrarulo, Liquid-chromatographic determination of ethyl-alcohol in body-fluids, J. Chromatogr. B 729, 103-110 (1999).
3. I. Rosendal, F. Schmidt, For the conversion of specific-gravity of distillate to alcohol content in beer analysis the OIML table is recommended - polynomials are given for alcohol and extract, J. I. Brewing 93, 373-377 (1987).
4. S. M. Rao, Spectrographic technique for determining refractive indexes, Opt. Eng. 36, 162-166 (1997).
5. A. O. S. S. Rangel, I. V. Toth, Determination of alcohol in wines by flow-injection spectrophotometry using gas-diffusion and an immobilized enzyme reactor, Am. J. Enol. Viticult. 50, 259-263 (1999).
6. W. Gopel, J. Hesse, J. N. Zemel, Sensors: a comprehensive survey, VCH, New York, (1989).
7. 蔡嬪嬪, 曾明漢, 氣體感測器之簡介、應用及市場, 材料與社會, 第68期, 50-61 (1992).
8. T. Seiyama, Chemical Sensor Technology, Kodansha Ltd, Tokyo, v.2 (1989).
9. J. W. Gardner, Microsensors: principles and applications, Wiley, New York (1994).
10. A. A. Tomchenko, G. P. Harmer, B. T. Marquis, J. W. Allen, Semiconducting metal oxide sensor array for the selective detection of combustion gases, Sens. Actuator B-Chem. 93, 126-134 (2003).
11. R. F. Taylor, J. S. Schultz, Handbook of chemical and biological sensors, Institute of Physics Pub., Philadelphia (1996).
12. T. E. Edmonds, Chemical sensors, Chapman and Hall, New York (1988).
13. M. D. Marazuela, M. C. Moreno-Bondi, Fiber-optic biosensors – an overview, Anal. Bioanal. 372, 664-682 (2002).
14. D. W. Dabill, P. T. Walsh, The effect of hyperbaric pressure on catalytic and electrochemical gas sensors, Sensors and Actuators B 30, 111-119 (1996).
15. 徐章, 高級感測器技術的發展理念, 量測資訊, 第35期, 1 (1993).
16. G. T. Hermanson, Bioconjugate Techniques, Elsevier Science, San Diego, California, 438-439 (1996).
17. B. Leca, J. L. Marty, Reagentless ethanol sensor based on a NAD-dependent dehydrogenase, Biosens. Bioelectron. 12, 1083-1088 (1997).
18. M. J. L. Castanon, A. J. M. Ordieres, P. T. Blanco, Amperometric detection of ethanol with poly-(o-phenylenediamine)-modified enzyme electrodes, Biosens. Bioelectron. 12, 511-520 (1997).
19. J. K. Park, H. J. Yee, K. S. Lee, W. Y. Lee, M. C. Shin, T. H. Kim, S. R. Kim, Determination of breath alcohol using a differential-type amperometric biosensor based on alcohol dehydrogenase, Anal. Chim. Acta. 390, 83-91 (1999).
20. A. Ramanavicius, K. Habermuller, E. Csoregi, V. Laurinavicius, W. Schuhmann, Polypyrrole entrapped quinohemoprotein alcohol dehydrogenase. Evidence for direct electron transfer via conducting-polymer chains, Anal. Chem. 71, 3581-3586 (1999).
21. M. Boujtita, J. P. Hart, R. Pittson, Development of a disposable ethanol biosensor based on a chemically modified screen-printed electrode coated with alcohol oxidase for the analysis of beer, Biosens. Bioelectron. 15, 257-263 (2000).
22. H. Gulce, A. Gulce, M. Kavanoz, H. Coskun, A. Yildiz, A new amperometric enzyme electrode for alcohol determination, Biosens. Bioelectron. 17, 517-521 (2002).
23. K. Mitsubayashi, H. Matsunaga, G. Hishio, S. Toda, Y. Nakanishi, Bioelectronic sniffers for ethanol and acetaldehyde in breath air after drinking, Biosens. Bioelectron. 20, 1573-1579 (2005).
24. E. Dominguez, H. L. Lan, Y. Okamoto, P. D. Hale, T. A. Skotheim, L. Gorton, B. Hahn-Hagerdal, Reagentless chemically modified carbon paste electrode based on a phenothiazine polymer derivative and yeast alcohol dehydrogenase for the analysis of ethanol, Biosens. Bioelectron. 8, 229-237 (1993).
25. M. Niculescu, R. Mieliauskiene, V. Laurinavicius, E. Csoregi, Simultaneous detection of ethanol, glucose and glycerol in wines using pyrroloquinoline quinine-dependent dehydrogenases based biosensors, Food Chem. 82, 481-489 (2003).
26. J. Razumiene, A. Vilkanauskyte, V. Gureviciene, V. Laurinavicius, N. V. Roznyatovskaya, Y. V. Ageeva, M. D. Reshetova, A. D. Ryabov, New bioorganometallic ferrocene derivatives as efficient mediators for glucose and ethanol biosensors based on PQQ-dependent dehydrogenases, J. Organometal. Chem. 668, 83-90 (2003).
27. Q. Tao, S. Yabuki, F. Mizutani, Preparation of a carbon paste/alcohol dehydrogenase electrode using polyethylene glycol-modified enzyme and oil-soluble mediator, Sens. Actuators B Chem. 65, 147-149 (2000).
28. A. Morales, F. Cespedes, E. Martinez-Fabregas, S. Alegret, Ethanol amperometric biosensor based on an alcohol oxidase-graphite-polymer biocomposite, Electrochim. Acta. 43, 3575-3579 (1998).
29. N. G. Patel, S. Meier, K. Cammann, G. C. Chamnitius, Screen-printed biosensors using different alcohol oxidases, Sens. Actuators B Chem. 75, 101-110 (2001).
30. N. Pena, R. Tarrega, A. J. Reviejo, J. M. Pingarron, Reticulated vitreous carbon-based composite bienzyme electrodes for the determination of alcohols in beer samples, Anal. Lett. 35 1931-1944 (2002).
31. A. Guzman-Vazquez de Prada, N. Pena, M. L. Mena, A. J. Reviejo, J. M. Pingarron, Graphite-Teflon composite bienzyme amperometric biosensors for monitoring of alcohols, Biosens. Bioelectron. 18, 1279-1288 (2003).
32. E. T. Hayes, B. K. Bellingham, H. B. Mark, A. Galal, An amperometric aqueous ethanol sensor based on the electrocatalytic oxidation at a cobalt-nickel oxide electrode, Electrochim. Acta. 41, 337-344 (1996).
33. Y. Chen, K. Y. Chen, A. C. C. Tseung, An electrochemical alcohol sensor based on a co-electrodeposited Pt-WO3 electrode, J. Electroanal. Chem. 471, 151-155 (1999).
34. B. Ballarin, R. Seeber, D. Tonelli, C. Zanardi, Anionic clay modified electrode for detection of alcohols. An electrocatalytic amperometric sensor, Electroanalysis 12, 434-441 (2000).
35. T. R. L. C. Paixao, M. Bertotti, Development of a breath alcohol sensor using a copper electrode in an alkaline medium, J. Electroanal. Chem. 571, 101-109 (2004).
36. G. Schiavon, N. Comisso, R. Toniolo, G. Bontempelli, Pulsed amperometric detection of ethanol in breath by gold electrodes supported on ion exchange membranes (solid polymer electrolytes), Electroanalysis 8, 544-548 (1996).
37. P. Jacquinot, A. W. E. Hodgson, B. Muller, B. Wehrli, P. C. Hauser, Amperometric detection of gaseous ethanol and acetaldehyde at low concentrations on an Au-Nafion electrode, Analyst 124, 871-876 (1999).
38. P. Millet, A. Michas, R. Durand, A solid polymer electrolyte-based ethanol gas sensor, J. Appl. Electrochem. 26, 933-937 (1996).
39. K. C. Kim, S. M. Cho, H. G. Choi, Detection of ethanol gas concentration by fuel cell sensors fabricated using a solid polymer electrolyte, Sens. Actuator B Chem. 67, 194-198 (2000).
40. A. Katayama-Aramata, H. Nakajima, K. Fujikawa, H. Kita, Metal-electrodes bonded on solid polymer electrolyte membranes (SPE) - the behavior of platinum bonded on SPE for hydrogen and oxygen-electrode processes, Electrochim. Acta. 28, 777 (1983).
41. H. Kita, K. Fujikawa, H. Nakajima, Metal-electrodes bonded on solid polymer electrolyte membranes (SPE) 2 - the polarization resistance of Pt-nafion electrode, Electrochim. Acta. 29, 1721 (1984).
42. H. Kita, H. Nakajima, Metal-electrodes bonded on solid polymer electrolyte membranes (SPE) 3 - CO oxidation at Au-SPE electrodes, Electrochim. Acta. 31, 193 (1986).
43. O. Enea, On the electrocatalytic oxidation of methanol vapors at Au-nafion electrodes, J. Electroanal. Chem. 235, 393 (1987).
44. D. Pletcher, Electrocatalysis: present and future, J. Appl. Electrochem. 14, 403-415 (1984).
45. A. M. Couper, D. Pletcher, F. C. Walsh, Electrode materials for electrosynthesis, Chemical Reviews Table of Contents 90, 837-865 (1990).
46. S. S. Gupta, J. Datta, Electrode kinetics of ethanol oxidation on novel Cu-Ni alloy supported catalysts synthesized from PTFE suspension, Journal of Power Sources 145, 124–132 (2005).
47. J. Bagchi, S. K. Bhattacharya, The effect of composition of Ni-supported Pt-Ru binary anode catalysts on ethanol oxidation for fuel cells, Journal of Power Sources 163, 661–670 (2007).
48. E. E. Switzera, T. S. Olson, A. K. Datye, P. Atanassov, M. R. Hibbs, C. J. Cornelius, Templated Pt-Sn electrocatalysts for ethanol, methanol and CO oxidation in alkaline media, Electrochim. Acta. 54, 989–995 (2009).
49. M. Amjad, D. Pletcher, C. Smith, The oxidation of alcohols at a nickel anode in alkaline t-butanol/water mixtures, J. Electrochem. Soc. 124, 203-206 (1977).
50. K. Manandhar, D. Pletcher, The preparation of high surface area nickel oxide electrodes for synthesis, Journal of Applied Electrochemistry 9, 707-713 (1979).
51. C. Xu, Y. Hu, J. Rong, S. P. Jiang, Y. Liu, Ni hollow spheres as catalysts for methanol and ethanol electrooxidation, Electrochemistry Communications 9, 2009-2012 (2007).
52. K. M. Yin, Potentiostatic deposition model of iron-nickel alloys on the rotating disk electrode in the presence of organic additive, J. Electrochem. Soc. 144, 1560-1566 (1997).
53. T. R. L. C. Paixao, D. Corbo, M. Bertotti, Amperometric determination of ethanol in beverages at copper electrodes in alkaline medium, Analytica Chimica Acta. 472, 123-131 (2002).
54. F. Wang, T. Watanabe, Preparation and characterization of the electrodeposited Fe-Cr alloy, Materials Science and Engineering A 349, 183-190 (2003).
55. J. S. Cooper, M. Ku Jeon, P. J. McGinn, Combinatorial screening of ternary Pt-Ni-Cr catalysts for methanol electro-oxidation, Electrochemistry Communications 10, 1545-1547 (2008).
56. F. Hu, G. Cui, Z. Wei, P. K. Shen, Improved kinetics of ethanol oxidation on Pd catalysts supported on tungsten carbides/carbon nanotubes, Electrochemistry Communications 10, 1303-1306 (2008).
57. F. Hu, C. Chen, Z. Wang, G. Wei, P. K. Shen, Mechanistic study of ethanol oxidation on Pd-NiO/C electrocatalyst, Electrochimica Acta 52, 1087–1091 (2006).
58. Y. L. Min, Y. C. Chen, Y. G. Zhao, C. Chen, Simple approach to synthesis Pt/NiO flower microspheres and their electrocatalytic properties, Materials Letters 62, 4503–4505 (2008).
59. J. W. Kim, S. M. Park, Electrochemical oxidation of ethanol at thermally prepared RuO2-Modified Electrodes in Alkaline Media, J. Electrochem. Soc. 146, 1075-1080 (1999).
60. C. Xu, P. K. Shen, X. Ji, R. Zeng, Y. L. Liu, Enhanced activity for ethanol electrooxidation on Pt-MgO/C catalysts, Electrochemistry Communications 7, 1305–1308 (2005).
61. Y. L. Lo, B. J. Hwang, Kinetics of ethanol oxidation on electroless Ni-P/SnO2/Ti electrodes in KOH solutions, J. Electrochem. Soc. 142, 445-450 (1995).
62. Y. Bai, J. Wu, J. Xi, J. Wang, W. Zhu, L. Chen, X. Qiu, Electrochemical oxidation of ethanol on Pt-ZrO2/C catalyst, Electrochemistry Communications 7 , 1087-1090 (2005).
63. S. M. A. Shibli, N. D. Suma, V. S. Dilimon, Development of TiO2-supported RuO2 composite-incorporated Ni-P electrodes for amperometric measurement of ethanol, Sensors and Actuators B 129, 139–145 (2008).
64. M. Morita, O. Niwa, S. Tou, N. Watanabe, Nickel content dependence of electrochemical behavior of carbohydrates on a titanium-nickel alloy electrode and its application to a liquid chromatography detector, J. Chromatogr. A 837, 17-24 (1999).
65. A. Salimi, K. Abdi, Enhancement of the analytical properties and catalytic activity of a nickel hexacyanoferrate modified carbon ceramic electrode prepared by two-step sol-gel technique: application to amperometric detection of hydrazine and hydroxyl amine, Talanta 63, 475-483 (2004).
66. I. C. Casella, M. Gatta, T. R. I. Cataldi, Amperometric determination of underivatized amino acids at a nickel-modified gold electrode by anion-exchange chromatography, J. Chromatogr. A 878, 57-67 (2000).
67. A. H. Ali, F. Zaera, Kinetic study on the selective catalytic oxidation of 2-propanol to acetone over nickel foils, J. Mol. Catal. A Chem. 177, 215-235 (2002).
68. P. A. Fiorito, S. I. C. de Torresi, Hybrid nickel hexacyanoferrate / polypyrrole composite as mediator for hydrogen peroxide detection and its application in oxidase-based biosensors, J. Electroanal. Chem. 581, 31-37 (2005).
69. P. Jacquinot, P. C. Hauser, Ni(II)cyclam catalyzed reduction of CO2-Towards a voltammetric sensor for the gas phase, Electroanalysis 15, 1437-1444 (2003).
70. M. Fleischmann, K. Korinek, D. Pletcher, The oxidation of organic compounds at a nickel anode in alkaline solution, J. Electroanal. Chem. 31, 39-49 (1971).
71. M. Fleischmann, K. Korinek, D. Pletcher, The kinetics and mechanism of the oxidation of amines and alcohols at oxide-covered nickel, silver, copper, and cobalt electrodes, J. Chem. Soc., Perkin Trans. 2, 10, 1396-1403 (1972).
72. A. A. El-Shafei, Electrocatalytic oxidation of methanol at a nickel hydroxide/glassy carbon modified electrode in alkaline medium, J. Electroanal. Chem. 471, 89-95 (1999).
73. M. A. A. Rahim, R. M. A. Hameed, M. W. Khalil, Nickel as a catalyst for the electro-oxidation of methanol in alkaline medium, J. Power Sources 134, 160-169 (2004).
74. A. Kowal, S. N. Port, R. J. Nichols, Nickel hydroxide electrocatalysts for alcohol oxidation reactions: An evaluation by infrared spectroscopy and electrochemical methods, Catal. Today 38, 483-492 (1997).
75. Y. Y. Liao, T. C. Chou, An amperometric alcohol sensor by using electroless nickel as working electrode, Electroanalysis 12, 55-59 (1999).
76. C. C. Pang, M. H. Chen, T. Y. Lin, T. C. Chou, An amperometric ethanol sensor by using nickel modified carbon-rod electrode, Sensors and Actuators B 73, 221-227 (2001).
77. C. C. Pang, M. H. Chen, T. Y. Lin, T. C. Chou, Ethanol sensor by using the nickel foil electrode, Electroanalysis 13, 499-503 (2001).
78. Y. C. Weng, T. C. Chou, Ethanol sensors by using RuO2-modified Ni electrode, Sensors and Actuators B 85, 246-255 (2002).
79. Y. C. Weng, T. C. Chou, Effects of electrochemical deposition of α-Ni(OH)2/Pt/Ti electrodes for ethanol anodic oxidation, J. Electrochem. Soc. 150, 385-390 (2003).
80. Y. G. Lee, T. C. Chou, Nickel-based thick film ethanol sensor, Electroanalysis 15, 1589-1597 (2003).
81. Y. G. Lee, T. C. Chou, The microstructure variation related to the cobalt-doped electroless nickel ethanol amperometric sensor, J. Electrochem. Soc. 150, 21-26 (2003).
82. Y. C. Weng, J. F. Rick, T. C. Chou, A sputtered thin film of nanostructured Ni/Pt/Ti on Al2O3 substrate for ethanol sensing, Biosensors and Bioelectronics 20, 41-51 (2004).
83. Y. G. Lee, T. C. Chou, Ionic liquid ethanol sensor, Biosensors and Bioelectronics 20, 33-40 (2004).
84. Y. C. Weng, T. C. Chou, Electrodeposited nickel-boron thin-film ethanol sensor, J. Electrochem. Soc. 153, H127-H132 (2006).
85. G. Natta, Costituzione degli idrossidi ed idrati. Nota I, Chim. Ital. 58, 344-358 (1928).
86. W. Lotmar, W. Feictknecht, Z. Kristalogr, Mineral. Petroga. Abt. A 93, 368-378 (1936).
87. A. Delahaye-Vidal, M. Figlarz, Textural and structural studies on nickel hydroxide electrodes. II. Turbostratic nickel (II) hydroxide submitted to electrochemical redox cycling, J. Appl. Electrochem. 17, 589-599 (1987).
88. S. Lebihan, J. Guenot, M. C. R. Figlarz, Crystallogenesis of nickel hydroxide Ni(OH)2, Comptes Rendus Hebdomadaires des Seances de l'Academie des Sciences Serie C 270, 2131 (1970).
89. M. C. R. Figlarz, S. Lebihan, Infrared spectroscopic study of a turbostatic nickel hydroxide and its crystallization, Comptes Rendus Hebdomadaires des Seances de l'Academie des Sciences Serie C 272, 580 (1971).
90. P. Oliva, J. Leonardi, J. F. Laurent, C. Delmas, J. J. Braconnier, M. Figlarz, F. Fievet, A. De-Guibert, Review of the structure and the electrochemistry of nickel hydroxides and oxy-hydroxides, J. Power Sources 8, 229-255 (1982).
91. H. Bode, K. Dehmelt, J. Witte, Zur Kenntnis der nickelhydroxidelektrode-I. Uber das nickel (II)-hydroxidehydrat, Electrochim. Acta 11, 1079-1087 (1966).
92. Y. B. Mo, E. Hwang, D. A. Scherson, In situ quartz crystal microbalance studies of nickel hydrous oxide films in alkaline, J. Electrochem. Soc. 143, 37-43 (1996).
93. G. T. Cheek, W. E. O’Grady, Redox behavior of the nickel oxide electrode system: quartz crystal microbalance studies, J. Electroanal. Chem. 421, 173-177 (1997).
94. P. Bernard, C. Gabrielli, M. Keddam, H. Takenouti, J. Leonardi, P. Blanchard, Ac quartz crystal microbalance applied to the studies of the nickel hydroxide behaviour in alkaline solutions, Electrochim. Acta. 36, 743-746 (1991).
95. M. C. Bernard, P. Bernard, M. Keddam, S. Senyarich, H. Takenouti, Characterisation of new nickel hydroxides during the transformation of alpha Ni(OH)2 to beta Ni(OH)2 by ageing, Electrochim. Acta. 41, 91-93 (1996).
96. R. Kostecki, F. McLarnon, Electrochemical and in situ Raman spectroscopic characterization of nickel hydroxide electrodes, J. Electrochem. Soc. 144, 485-493 (1997).
97. C. Delmas, C. Tessier, Stacking faults in the structure of nickel hydroxide: a rationale of its high electrochemical activity, J. Mater. Chem. 7, 1439-1443 (1997).
98. S. Deabate, F. Henn, Structural modifications and electrochemical behaviour of the beta(II)-Ni(OH)(2)/beta(III)-NiOOH redox couple upon galvanostatic charging discharging cycling, Electrochim. Acta. 50, 2823-2835 (2005).
99. W. E. O’Grady, K. I. Pandya, K. E. Swider, D. A. Corrigan, In situ X-ray absorption near-edge structure evidence for quadrivalent nickel in nickel battery electrodes, J. Electrochem. Soc. 143, 1613-1616 (1996).
100. J. W. Kim, S. M. Park, In situ XANES studies of electrodeposited nickel oxide films with metal additives for the electro-oxidation of ethanol, J. Electrochem. Soc. 150, E560-E566 (2003).
101. M. Wehrens-Dijksma, P. H. L. Notten, Electrochemical quartz microbalance characterization of Ni(OH)2-based thin film electrodes, Electrochim. Acta. 51, 3609-3621 (2006).
102. D. M. MacArthur, Proton diffusion coefficient for nickel hydroxide electrode, J. Electrochem. Soc. 117, 729 (1970).
103. G. Feuillade, R. Jacoud, Ion transfer during anode oxidation of a nickel hydroxide, Electrochim. Acta. 14, 1297 (1969).
104. D. A. Corrigan, S. L. Knight, Electrochemical and spectroscopic evidence on the participation of quadrivalent nickel in the nickel-hydroxide redox reaction, J. Electrochem. Soc. 136, 613-619 (1989).
105. S. I. Cordoba de Torresi, C. Gabrielli, A. Hugot Le Goff, R. Torresi, Electrochromic behavior of nickel-oxide electrodes 1 - identification of the colored state using quartz crystal microbalance, J. Electrochem. Soc. 138, 1548-1553 (1991).
106. Z. Takehara, M. Kato, S. Yoshizawa, Electrode kinetics of nickel hydroxide in alkaline solution, Electrochim. Acta. 16, 833 (1971).
107. 藤嶋昭, 相澤益男, 井上徹, 電氣化學測定法, 技報堂出版株式會社, 東京 (1984).
108. R. I. Stefan, J. Frederick van Staden, H. Y. Aboul-Enein, Electrochemical sensors in bioanalysis, Marcel Dekker Inc., New York (2001).
109. A. J. Cunningham, Introduction to bioanalytical sensors, Wiley, New York (1998).
110. J. Janata, Principle of chemical sensors, Plenum Press, New York (1989).
111. K. Ren, Selectivity problems of membrane ion-selective electrodes - a method alternative to the IUPAC recommendation and its application to the selectivity mechanism investigation, Fresenius J. Anal. Chem. 365, 389-397 (1999).
112. J. Wang, Selectivity coefficients for amperometric sensors, Talanta 41, 857-863 (1994).
113. A. E. G. Cass, Biosensors: a practical approach, Oxford University Press, New York (1990).
114. V. V. Cosofret, R. P. Buck, Pharmaceutical applications of membrane sensors, CRC Press Inc., Boca Raton, Florida (1992).
115. A. J. Bard, L. R. Faulkner, Electrochemical methods: fundamentals and applications, Wiley, Hoboken, New Jersey (2001).
116. 潘佳琪, 利用鎳箔為電極製備乙醇感測器之研究, 碩士論文, 化學工程學系, 國立成功大學 (1998).
117. 陳敏華, 研究三氯乙烯電化學行為與其微加工感測器之製備, 博士論文, 化學工程學系, 國立成功大學 (2004).
118. M. A. Sattar, B. E. Conway, Electrochemistry of the nickel-oxide electrode-VI. Surface oxidation of nickel anodes in alkaline solution, Electrochim. Acta. 14, 695-710 (1969).
119. W. M. Vogel, Electrochemical evidence for high valence states of nickel, Electrochim Acta. 13, 1815-1820 (1969).
120. J. L. Weininger, M. W. Breiter, Effect of crystal structure on the anodic oxidation of nickel, J. Electrochem. Soc. 10, 484-490 (1963).
121. B. E. Conway, M. A. Sattar, Electrochemistry of the nickel oxide electrode. Part VIII. Stoichiometry of thin film oxide layer, J. Electroanal. Chem. 19, 351-364 (1968).
122. G. Vertes, G. Horanyi, Some problems of the kinetics of the oxidation of organic compounds at oxide-covered nickel electrodes, Electroanal. Chem. Interfac. Electrochem. 52, 47-53 (1974).
123. 羅一玲, 無電鍍鎳與鎳鍍層之電化學特性與應用, 博士論文,化學工程技術研究所, 國立台灣工業技術學院 (1996).
124. 廖云英, 電流式酒精感測器之改良與微小化之研究, 碩士論文, 化學工程學系, 國立成功大學 (2000).
125. P. M. Robertson, On the oxidation of alcohols and amines at nickel oxide electrodes: mechanistic aspects, J. Electroanal. Chem. 111, 97-104 (1980).
126. P. H. L. Notten, J. R. G. Van Beek, Nickel-metalhydride batteries: from concept to characteristics, Chem. Ind. 54, 102-115 (2000).
127. D. M. MacArthur, Power sources – vol. 3, Oriel Press Limited, New Castle upon Tyne, England, (1970).
128. D. A. Corrigan, R. M. Bendert, Effect of coprecipitated metal-ions on the electrochemistry of nickel-hydroxide thin-films - cyclic voltammetry in 1M KOH, J. Electrochem. Soc. 136, 723-728 (1989).
129. M. K. Carpenter, R. S. Conell, D. A. Corrigan, The electrochromic properties of hydrous nickel-oxide, Solar Energy Mater. 16, 333-346 (1987).
130. S. I. Cordoba, R. E. Carbonio, M. L. Teijelo, V. A. Macagno, The electrochemical response of binary-mixtures of hydrous transition-metal hydroxides co-precipitated on conducting substrates with reference to the oxygen evolution reaction, Electrochim. Acta 31, 1321-1332 (1986).
131. M. E. Unates, M. E. Folquer, J. R. Vilche, A. J. Arvia, The influence of foreign cations on the electrochemical-behavior of the nickel-hydroxide electrode, J. Electrochem. Soc. 139, 2697-2704 (1992).
132. R. Etchenique, E. J. Calvo, Electrochemical quartz crystal microbalance gravimetric and viscoelastic studies of nickel hydroxide battery electrodes, J. Electrochem. Soc. 148, A361-A367 (2001).
133. H. M. French, M. J. Henderson, A. R. Hillman, E. Vieil, Temporal resolution of ion and solvent transfers at nickel hydroxide films exposed to LiOH, Solid State Ionics 150, 27-37 (2002).
134. C. C. Streinz, S. Motupally, J. W. Weidner, The effect of temperature and ethanol on the deposition of nickel hydroxide films, J. Electrochem. Soc. 142, 4051-4056 (1995).
135. C. C. Streinz, A. P. Hartman, S. Motupally, J. W. Weidner, The effect of current and nickel nitrate concentration on the deposition of nickel-hydroxide films, J. Electrochem. Soc. 142, 1084-1089 (1995).
136. F. P. Kong, R. Kostecki, F. McLarnon, R. H. Muller, Spectroscopic ellipsometry of electrochemical precipitation and oxidation of nickel hydroxide films, Thin Solid Films 313, 775-780 (1998).
137. F. P. Kong, R. Kostecki, F. McLarnon, In situ ellipsometric study of the electroprecipitation of nickel hydroxide films, J. Electrochem. Soc. 145, 1174-1178 (1998).
138. K. W. Nam, K. B. Kim, A study of the preparation of NiOx electrode via electrochemical route for supercapacitor applications and their charge storage mechanism, J. Electrochem. Soc. 149, A346-A354 (2002).
139. S. H. Kim, D. A. Tryk, M. R. Antonio, R. Carr, D. Scherson, In-situ X-ray-absorption fine-structure studies of foreign metal-ions in nickel hydrous oxide electrodes in alkaline electrolytes, J. Phys. Chem. 98, 10269-10276 (1994).
140. M. Balasubramanian, C. A. Melendres, S. Mini, X-ray absorption spectroscopy studies of the local atomic and electronic structure of iron incorporated into electrodeposited hydrous nickel oxide films, J. Phys. Chem. B 104, 4300-4306 (2000).
141. I. C. Faria, R. Torresi, A. Gorenstein, Electrochemical intercalation in NiOx thin films, Electrochim. Acta. 38, 2765-2771 (1993).
142. W. Visscher, E. Barendrecht, The anodic oxidation of nickel in alkaline solution, Electrochim. Acta. 25, 6551-655 (1980).
143. M. S. Kim, T. S. Hwang, K. B. Kim, A study of the electrochemical redox behavior of electrochemically precipitated nickel hydroxides using electrochemical quartz crystal microbalance, J. Electrochem. Soc. 144, 1537-1543 (1997).
144. M. S. Kim, K. B. Kim, A study on the phase transformation of electrochemically precipitated nickel hydroxides using an electrochemical quartz crystal microbalance, J. Electrochem. Soc. 145, 507-511 (1998).
145. G. Sauerbrey, Z. Phys. 155, 206 (1959).
146. C. K. O'Sullivan, G. G. Guilbault, Commercial quartz crystal microbalances - theory and applications, Biosens. Bioelectron. 14, 663-670 (1999).
147. J. Curie, P. Curie, An oscillating quartz crystal mass detector, Rendu 91, 294-297 (1880).
148. M. Hepel, Interfacial electrochemistry, Marcel Dekker Inc., New York (1999).
149. A.R. Hillman, Encyclopedia of electrochemistry - vol. 3, Wiley, New York (2003).
150. S. Brukenstenine, M. Shay, Experimental aspects of use of the quartz crystal microbalance in solution, Electrochim. Acta. 30, 1295 (1985).
151. 台灣國家同步輻射研究中心 (http://www.nsrrc.org.tw/).
152. G. L. Haller, Spectroscopic analysis of local structure and small particles of catalysts, Applications of Surface Science 20, 351-381 (1985).
153. A. S. Bommannavar, P. A. Montano, M. J. Yacaman, EXAFS, XANES and TEM studies of Pt-Ni bimetallic catalysts, Surface Science 156, 426-435 (1985).
154. F. Garin, G. Maire, Correlations between the surface structure of bimetallic or alloy catalysts and hydrocarbon skeletal rearrangement mechanisms: approach to the nature of the active sites and to the reaction intermediates, J. Molecular Catalysis 52, 147-167 (1989).
155. M. K. Min, J. Cho, K. Cho, H. Kim, Particle size and alloying effects of Pt-based alloy catalysts for fuel cell applications, Electrochimica Acta 45, 4211-4217 (2000).
156. I. V. Pirog, T. I. Nedoseikina, Study of effective pair potentials in cubic metals, Physica B 334, 123–129 (2003).
157. L. J. Simona, P. J. Kooymanc, J. G. van Ommenb, J. A. Lercher, Effect of Co and Ni on benzene hydrogenation and sulfur tolerance of Pt/H-MOR, Applied Catalysis A: General 252, 283–293 (2003).
158. B. Li, S. Kado, Y. Mukainakano, T. Miyazawa, T. Miyao, S. Naito, K. Okumura, K. Kunimori, K. Tomishige, Surface modification of Ni catalysts with trace Pt for oxidative steam reforming of methane, Journal of Catalysis 245, 144–155 (2007).
159. E. C. Souza, E. A. Ticianelli, Structural and electrochemical properties of MgNi-based alloys with Ti, Pt and Pd additives, International Journal of Hydrogen Energy 32, 4917-4924 (2007).
160. Y. Shu, L. E. Murillo, J. P. Bosco, W. Huang, A. I. Frenkel, J. G. Chen, The effect of impregnation sequence on the hydrogenation activity and selectivity of supported Pt/Ni bimetallic catalysts, Applied Catalysis A: General 339, 169–179 (2008).
161. H. J. Kim, S. M. Choi, S. H. Nam, M. H. Seo, W. B. Kim, Carbon-supported PtNi catalysts for electrooxidation of cyclohexane to benzene over polymer electrolyte fuel cells, Catalysis Today 146, 9-14 (2009).
162. L. P. R. Profeti, J. A. C. Diasb, J. M. Assafc, E. M. Assaf, Hydrogen production by steam reforming of ethanol over Ni-based catalysts promoted with noble metals, Journal of Power Sources 190, 525–533 (2009).
163. K. Nakamura, T. Miyazawa, T. Sakurai, T. Miyao, S. Naito, N. Begum, K. Kunimori, K. Tomishige, Promoting effect of MgO addition to Pt/Ni/CeO2/Al2O3 in the steam gasification of biomass, Applied Catalysis B: Environmental 86, 36-44 (2009).
164. E. E. Koch, Handbook on synchrotron radiation, North-Holland, New York (1983).
165. B. K. Teo, EXAFS: basic principles and data analysis, Springer-Verlag, New York (1986).
166. D. C. Koningsberger, R. Prins, X-ray absorption: principles, applications, techniques of EXAFS, SEXAFS, and XANES, in Chemical Analysis 92, Wiley, New York (1988).
167. http://xafs.org
168. L. G. R. A. Santos, C. H. F. Oliveira, I. R. Moraes, E. A. Ticianelli, Oxygen reduction reaction in acid medium on Pt-Ni/C prepared by a microemulsion method, J. Electroanal. Chem. 596, 141-148 (2006).
169. K. W. Park, J. H. Choi, B. K. Kwon, S. A. Lee, Y. E. Sung, H. Y. Ha, S. A. Hong, H. Kim, A. Wieckowski, Chemical and electronic effects of Ni in Pt/Ni and Pt/Ru/Ni alloy nanoparticles in methanol electrooxidation, J. Phys. Chem. B 106, 1869-1877 (2002).
170. L. Jurczyszyn, N. Mingo, F. Flores, Conductance simulation through single atom junctions at the scanning tunnelling microscope, Materials Science and Engineering B37, 93-95 (1996).
171. W. Huang, L. Zhang, Y. Gao, H. Jin, Effect of a thin W, Pt, Mo, and Zr interlayer on the thermal stability and electrical characteristics of NiSi, Microelectronic Engineering 84, 678-683 (2007).
172. Z. Huang, W. Zhou, X. Tang, Effects of annealing time on infrared emissivity of the Pt film grown on Ni alloy, Applied Surface Science 256, 2025–2030 (2010).
173. H. S. Johnston, Gas phase reaction rate theory, Ronald, New York (1966).
174. W. C. Gardiner, Jr., Rate and mechanisms of chemical reactions, Benjamin, New York (1969).
175. B. K. Teo, P. A. Lee, Ab Initio Calculations of Amplitude and Phase Functions for Extended X-ray Absorption Fine Structure Spectroscopy, Journal of the American Chemical Society 101, 2815-2832 (1979).
176. 台灣國家高速電腦中心之ICSD資料庫。
177. H. E. Swanson, E. Tatge, Standard X-ray diffraction powder patterns, Dept. of Commerce, National Bureau of Standards, Washington DC, U.S (1953).
178. C. Leroux, M. C. Cadeville, V. Pierron-Bohnes, G. Inden, F. Hinz, Comparative investigation of structural and transport properties of L10 NiPt and CoPt phases; the role of magnetism, J. Phys. F: Met. Phys. 18, 2033-2051 (1988).
179. N. G. Schmahl, G. F. Eikerlin, Ueber Kryptomodifikationen des Cu(II)-Oxids, Zeitschrift Fur Physikalische Chemie-Frankfurt 62, 268-& (1968).
180. K. B. Schwartz, J. B. Parise, C. T. Prewitt, R. D. Shannon, Structure and crystal chemistry of mixed-valence ternary platinum oxides: MnPt3O6, CoPt3O6, ZnPt3O6, MgPt3O6, and NiPt3O6., Acta Crystallographica section B-Stuctural Science 39, 217-226 (1983).
181. D. Cahen, J. A. Ibers, R. D. Shannon, Structure and properties of Ni0.25Pt3O4 - A new platinum bronze, Inorganic Chemistry 11, 2311-2315 (1972).
182. H. M. Park, T. W. Kim, S. J. Hwang, J. H. Choy, Chemical bonding nature and mesoporous structure of nickel intercalated montmorillonite clay, Bull. Korean Chem. Soc. 27, 1323-1328 (2006).