簡易檢索 / 詳目顯示

研究生: 林玫妤
Lin, Mei-Yu
論文名稱: 沉積碳化鈦/類鑽碳多層薄膜
Deposition of Titanium Carbide/Diamond-like Carbon Multilayer Films
指導教授: 洪昭南
Hong, Chao-Nan
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 129
中文關鍵詞: 碳化鈦/類鑽碳多層薄膜調整週期硬度
外文關鍵詞: TiC/DLC multilayer films, Modulation period, Hardness
相關次數: 點閱:101下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 類鑽碳為結構類似鑽石型態的介穩態非晶質碳,同時具有sp2與sp3鍵結,具有高硬度、耐磨耗、低摩擦係數、化學惰性、表面平滑等優異的性質,已經被廣泛應用於工業界中。
    由於沉積類鑽碳膜是利用高能離子撞擊基板使碳原子緊密排列,因此薄膜會有壓縮應力過大的問題,造成與基板附著力不好,而產生崩膜和脆性破裂的現象。本研究利用脈衝直流磁控反應性濺鍍沉積法與電漿輔助化學氣相沉積法,成功沉積出碳化鈦/類鑽碳多層薄膜結構,並探討在不同製程參數下多層膜的機械性質,以期得到高硬度、高韌性的多層膜。
    我們利用光學顯微鏡觀察膜層的表面狀態,XRD與拉曼光譜來鑑定薄膜的微結構,並用SEM觀察截面的結構型態並量測厚度,再用奈米壓痕測定其機械性質。
    實驗結果顯示,結構為碳化鈦/類鑽碳重複堆疊二週期的多層膜,其初始硬度雖然有20GPa,但隨著壓痕越深硬度卻隨之下降至16GPa,但是在三週期的多層膜結構卻無此現象,顯示出個別膜層的厚度對整體機械性質有極大的影響;層與層之間界面數上升,有利於能量的消耗,截面的裂痕會發生偏轉而終止在層與層之間的界面,並且伴隨著塑性變形使得能量耗散,也能使硬度維持穩定。

    In this study, the TiC/diamond like carbon (DLC) multilayer films with different periods (two periods and three periods) were deposited on Si (100) substrate by pulse DC magnetron reactive sputtering and plasma enhance chemical vapor deposition method (PECVD). X-ray diffraction (XRD), scanning electron microscope (SEM), Raman spectrum, optical microscope (OM) and nanoindentation were used for examine the microstructure and mechanical properties of the films. The results showed that the TiC/DLC multilayer films with three periods had the best performance of stress relaxation for maintaining the hardness. And the high temperature deposition process and DLC layer with RF power 60W had better mechanical properties.

    Key word: TiC/DLC multilayer films; Modulation period; Hardness

    目錄 摘要 i Extended Abstract ii 誌謝 vi 目錄 vii 圖目錄 xii 表目錄 xvii 第一章 緒論 1 1.1 類鑽碳薄膜的歷史回顧 1 1.2 現有問題 7 1.3 研究動機 9 第二章 理論基礎 10 2.1 電漿化學 10 2.1.1 電漿的基本性質 10 2.1.2 電容耦合平行板電極電漿系統 16 2.1.3 濺鍍式電漿 21 2.2 類鑽碳膜 23 2.2.1 類鑽石碳膜 24 2.2.2 類石墨薄膜 25 2.2.3 類高分子薄膜 25 2.3 類鑽碳膜之成長機制 29 2.4 離子被覆 37 2.4.1 離子被覆技術 37 2.4.2 離子轟擊效應 38 2.5 薄膜塗層之理論基礎 40 2.5.1 保護性塗層 41 2.5.2 幾何上的塗層參數 41 2.5.3 物理化學上的塗層參數 42 2.6 多層膜塗層 47 2.7 奈米複合薄膜 49 第三章 實驗參數與研究方法 50 3.1 實驗流程 50 3.2 實驗設計 51 3.2.1 碳源的選擇 51 3.2.2 高溫鍍膜 51 3.2.3 多層膜的構想 52 3.2.4 實驗參數 52 3.3 實驗裝置 53 3.3.1 電容耦合式電漿輔助物理氣相沉積系統 53 3.3.2 電漿反應器之設計 54 3.3.3 電源供應器 54 3.3.4 碳源提供 54 3.3.5 溫度量測及控制 55 3.3.6 抽氣系統 55 3.3.7 壓力檢測系統 55 3.4 實驗材料 56 3.4.1 基板材料 56 3.4.2 實驗藥品及氣體 56 3.5 實驗操作 57 3.5.1 基板前處理 57 3.5.2 實驗操作步驟 57 3.6 分析與鑑定 59 3.6.1 成長型態觀察 59 3.6.2 成長速率測定 59 3.6.3 薄膜結構分析 59 3.6.4 殘留應力分析 67 3.6.5 奈米壓痕 67 第四章 結果與討論 71 4.1 反應性濺鍍成長碳化鈦薄膜 71 4.1.1 ENI功率對碳化鈦薄膜之影響 71 4.1.2 甲烷濃度對碳化鈦薄膜之影響 75 4.2 類鑽碳薄膜成長之討論 79 4.2.1 RF功率對成長類鑽碳薄膜之影響 79 4.3 沉積多層膜之討論 91 4.3.1 層數週期對多層膜之影響 91 4.3.2 改變類鑽碳層RF功率對多層薄膜之影響 99 4.3.3 鍍膜溫度對多層膜之影響 104 第五章 結論與未來展望 112 5.1結論 112 5.2未來展望 113 第六章 參考文獻 114

    [1] H. Schmellenmeier, Experim. Tech. D. Physik 1(1953) 49--68.
    [2] C. Weissmantel, K. Bewilogua, K. Breuer, D. Dietrich, U. Ebersbach, H.-J. Erler, B. Rau, G. Reisse, Preparation and properties of hard iC and i-BN coatings, Thin Solid Films, 96 (1982) 31-44.
    [3] S. Aisenberg, R. Chabot, Ion‐beam deposition of thin films of diamondlike carbon, Journal of Applied Physics, 42 (1971) 2953-2958.
    [4] A. Voevodin, S. Walck, J. Zabinski, Architecture of multilayer nanocomposite coatings with super-hard diamond-like carbon layers for wear protection at high contact loads, Wear, 203 (1997) 516-527.
    [5] K. Bewilogua, D. Hofmann, History of diamond-like carbon films — From first experiments to worldwide applications, Surface and Coatings Technology, 242 (2014) 214-225.
    [6] H.O. Pierson, Handbook of carbon, graphite, diamonds and fullerenes: processing, properties and applications, William Andrew2012.
    [7] B. Bhushan, Tribology and mechanics of magnetic storage devices, Springer Science & Business Media 2012.
    [8] R. Maboudian, R.T. Howe, Critical review: Adhesion in surface micromechanical structures, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 15 (1997) 1-20.
    [9] N. Tas, T. Sonnenberg, H. Jansen, R. Legtenberg, M. Elwenspoek, Stiction in surface micromachining, Journal of Micromechanics and Microengineering, 6 (1996) 385.
    [10] J. Robertson, Comparison of diamond‐like carbon to diamond for applications, physica status solidi (a), 205 (2008) 2233-2244.
    [11] R. Hauert, An overview on the tribological behavior of diamond-like carbon in technical and medical applications, Tribol. Int., 37 (2004) 991-1003.
    [12] G. Dearnaley, J.H. Arps, Biomedical applications of diamond-like carbon (DLC) coatings: A review, Surface and Coatings Technology, 200 (2005) 2518-2524.
    [13] J. Vetter, 60years of DLC coatings: Historical highlights and technical review of cathodic arc processes to synthesize various DLC types, and their evolution for industrial applications, Surface and Coatings Technology, 257 (2014) 213-240.
    [14] R. Zahid, H. Masjuki, M. Varman, R.A. Mufti, M.A. Kalam, M. Gulzar, Effect of lubricant formulations on the tribological performance of self-mated doped DLC contacts: A review, Tribology Letters, 58 (2015) 32.
    [15] T. Friedmann, J. Sullivan, J. Knapp, D. Tallant, D. Follstaedt, D. Medlin, P. Mirkarimi, Thick stress-free amorphous-tetrahedral carbon films with hardness near that of diamond, Applied Physics Letters, 71 (1997) 3820-3822.
    [16] H. Dimigen, C.-P. Klages, Microstructure and wear behavior of metal-containing diamond-like coatings, Surface and Coatings Technology, 49 (1991) 543-547.
    [17] A. Voevodin, R. Bantle, A. Matthews, Dynamic impact wear of TiCxNy and Ti-DLC composite coatings, Wear, 185 (1995) 151-157.
    [18] A. Voevodin, C. Rebholz, A. Matthews, Comparative tribology studies of hard ceramic and composite metal-DLC coatings in sliding friction conditions, Tribology Transactions, 38 (1995) 829-836.
    [19] S. Camargo, R. Santos, W. Beyer, Characterization of DLC: Si films by the gas effusion technique, Diamond and Related Materials, 9 (2000) 658-662.
    [20] M.-G. Kim, K.-R. Lee, K.Y. Eun, Tribological behavior of silicon-incorporated diamond-like carbon films, Surface and Coatings Technology, 112 (1999) 204-209.
    [21] M. Siegal, J. Barbour, P.N. Provencio, D. Tallant, T. Friedmann, Amorphous-tetrahedral diamondlike carbon layered structures resulting from film growth energetics, Applied Physics Letters, 73 (1998) 759-761.
    [22] J. Dong, D.A. Drabold, Ring formation and the structural and electronic properties of tetrahedral amorphous carbon surfaces, Physical Review B, 57 (1998) 15591.
    [23] M. Bentzon, K. Mogensen, J.B. Hansen, C. Barholm-Hansen, C. Tr, P. Holiday, S. Eskildsen, Metallic interlayers between steel and diamond-like carbon, Surface and Coatings Technology, 68 (1994) 651-655.
    [24] H. Kupfer, F. Richter, S. Friedrich, H.-J. Spies, Deposition and properties of TiN/carbon multilayers for corrosion protection of steel, Surface and Coatings Technology, 74 (1995) 333-338.
    [25] Z. Xu, H. Sun, Y. Leng, X. Li, W. Yang, N. Huang, Effect of modulation periods on the microstructure and mechanical properties of DLC/TiC multilayer films deposited by filtered cathodic vacuum arc method, Applied Surface Science, 328 (2015) 319-324.
    [26] M. Delplancke-Ogletree, O.R. Monteiro, Wear behavior of diamond-like carbon/metal carbide multilayers, Surface and coatings Technology, 108 (1998) 484-488.
    [27] J. Takadoum, H.H. Bennani, M. Allouard, Friction and wear characteristics of TiN, TiCN and diamond-like carbon films, Surface and Coatings Technology, 88 (1997) 232-238.
    [28] A. Voevodin, J. Schneider, C. Rebholz, A. Matthews, Multilayer composite ceramicmetal-DLC coatings for sliding wear applications, Tribol. Int., 29 (1996) 559-570.
    [29] R. Huang, C. Chan, C. Lee, J. Gong, K. Lai, C. Lee, K. Li, L. Wen, C. Sun, Wear-resistant multilayered diamond-like carbon coating prepared by pulse biased arc ion plating, Diamond and Related Materials, 10 (2001) 1850-1854.
    [30] 赤.村.渡. 蛯原健治, 電漿工學的基礎, 復文書局, 台灣台南, 1986.
    [31] 高正雄, 電漿化學, 復漢出版社, 台灣台南, 1984.
    [32] 黃世明, 以熱燈絲化學氣相沉積法成長鑽石及奈米鑽石薄膜, 成功大學化學工程學系學位論文
    [33] B.N. Chapman, Glow discharge processes, Wiley1980.
    [34] J.R. Roth, Industrial Plasma Engineering Volume 1 Principles. Bristol and Philadelphia, Institute of Physics publishing (1995).
    [35] T. Takagi, Ion–surface interactions during thin film deposition, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 2 (1984) 382-388.
    [36] 翁文毅, 電漿輔助化學氣相沈積法成長改質類鑽碳膜, 成功大學化學工程學系學位論文
    [37] H. Koenig, L. Maissel, Application of RF discharges to sputtering, IBM Journal of Research and Development, 14 (1970) 168-171.
    [38] 陳國政, 以離子被覆法沉積具光致親水性奈米複合碳膜之研究, 成功大學微機電系統工程研究所學位論文
    [39] J.-E. Sundgren, B.-O. Johansson, S.-E. Karlsson, Influence of substrate bias on composition and structure of reactively rf-sputtered TiC films, Thin Solid Films, 80 (1981) 77-83.
    [40] C. De Martino, F. Demichelis, A. Tagliaferro, Determination of the sp3sp2 ratio in aC: H films by infrared spectrometry analysis, Diamond and Related Materials, 4 (1995) 1210-1215.
    [41] J. Robertson, Diamond-like amorphous carbon, Materials Science and Engineering: R: Reports, 37 (2002) 129-281.
    [42] J. Robertson, Properties of diamond-like carbon, Surface and Coatings Technology, 50 (1992) 185-203.
    [43] H. Liu, D.S. Dandy, Studies on nucleation process in diamond CVD: an overview of recent developments, Diamond and Related Materials, 4 (1995) 1173-1188.
    [44] I. Garnev, V. Orlinov, Evaluation and parametric modelling of abrasive wear resistance of ion-plated thin DLC films, Diamond and Related Materials, 4 (1995) 1041-1045.
    [45] N. Mutsukura, S.i. Inoue, Y. Machi, Deposition mechanism of hydrogenated hard‐carbon films in a CH4 rf discharge plasma, Journal of Applied Physics, 72 (1992) 43-53.
    [46] J. Robertson, The deposition mechanism of diamond-like aC and aC: H, Diamond and Related Materials, 3 (1994) 361-368.
    [47] Y. Lifshitz, S. Kasi, J. Rabalais, Subplantation model for film growth from hyperthermal species: Application to diamond, Physical Review Letters, 62 (1989) 1290.
    [48] J. Robertson, Deposition mechanism of cubic boron nitride, Diamond and Related Materials, 5 (1996) 519-524.
    [49] T. Miyazawa, S. Misawa, S. Yoshida, S.i. Gonda, Preparation and structure of carbon film deposited by a mass‐separated C+ ion beam, Journal of Applied Physics, 55 (1984) 188-193.
    [50] J. Freeman, W. Temple, G. Gard, Epitaxial synthesis of diamond by carbon-ion deposition at low energy, Nature, 275 (1978) 634-635.
    [51] C. Davis, A simple model for the formation of compressive stress in thin films by ion bombardment, Thin Solid Films, 226 (1993) 30-34.
    [52] R.E. Clausing, L.L. Horton, J.C. Angus, P. Koidl, Diamond and diamond-like films and coatings, Springer Science & Business Media 2012.
    [53] K. Enke, Some new results on the fabrication of and the mechanical, electrical and optical properties of i-carbon layers, Thin Solid Films, 80 (1981) 227-234.
    [54] J. Zou, K. Reichelt, K. Schmidt, B. Dischler, The deposition and study of hard carbon films, Journal of Applied Physics, 65 (1989) 3914-3918.
    [55] J. Zou, K. Schmidt, K. Reichelt, B. Dischler, The properties of a‐C: H films deposited by plasma decomposition of C2H2, Journal of Applied Physics, 67 (1990) 487-494.
    [56] P. Couderc, Y. Catherine, Structure and physical properties of plasma-grown amorphous hydrogenated carbon films, Thin Solid Films, 146 (1987) 93-107.
    [57] E. Neyts, A. Bogaerts, M. Van De Sanden, Reaction mechanisms and thin aC: H film growth from low energy hydrocarbon radicals, Journal of Physics: Conference Series, IOP Publishing, 2007, p. 012020.
    [58] J.J. Cuomo, D.L. Pappas, J. Bruley, J.P. Doyle, K.L. Saenger, Vapor deposition processes for amorphous carbon films with sp3 fractions approaching diamond, Journal of Applied Physics, 70 (1991) 1706-1711.
    [59] J. Robertson, Deposition mechanisms for promoting sp3 bonding in diamond-like carbon, Diamond and Related Materials, 2 (1993) 984-989.
    [60] P. Fallon, V. Veerasamy, C. Davis, J. Robertson, G. Amaratunga, W. Milne, J. Koskinen, Properties of filtered-ion-beam-deposited diamondlike carbon as a function of ion energy, Physical Review B, 48 (1993) 4777.
    [61] P.D. Townsend, J.C. Kelly, N.E.W. Hartley, Ion implantation, sputtering and their applications, Academic Press1976.
    [62] X.S. Li, I.M. Low, Ceramic cutting tools-an introduction, Key Engineering Materials, Trans Tech Publ, 1994, pp. 1-18.
    [63] N. Ahmed, Ion plating technology: developments and applications, John Wiley & Sons, Inc., (1987) 171.
    [64] 丁南宏, 方宏聲等, 真空技術與應用, 行政院國家科學委員會精密儀器發展中心, 2001.
    [65] P.H. Mayrhofer, C. Mitterer, L. Hultman, H. Clemens, Microstructural design of hard coatings, Progress in Materials Science, 51 (2006) 1032-1114.
    [66] A. Kozłowski, J. Tymowski, T. Żak, Manufacturing techniques, 1978.
    [67] T. Biestek, S. Sękowski, Methoden zur Prufüng metallischer Überzüge, Vieweg Verlag, , Braunschweig, 1971.
    [68] T. Burakowski, T. Wierzchon, Surface engineering of metals: principles, equipment, technologies, CRC press1998.
    [69] H. Holleck, Schier, Multilayer PVD coatings for wear protection, Surface and Coatings Technology, 76 (1995) 328-336.
    [70] C. Subramanian, Strafford, KN, Review of multicomponent and multilayer coatings for tribological applications, Wear, 165 (1993) 85-95.
    [71] 田民波, 材料學概論, 五南圖書出版股份有限公司, 台北市, 2015.
    [72] A. Voevodin, S. Prasad, J. Zabinski, Nanocrystalline carbide/amorphous carbon composites, Journal of Applied Physics, 82 (1997) 855-858.
    [73] A. Voevodin, J. Zabinski, Superhard, functionally gradient, nanolayered and nanocomposite diamond-like carbon coatings for wear protection, Diamond and Related Materials, 7 (1998) 463-467.
    [74] S. Logothetidis, C. Charitidis, M. Gioti, Y. Panayiotatos, M. Handrea, W. Kautek, Comprehensive study on the properties of multilayered amorphous carbon films, Diamond and Related Materials, 9 (2000) 756-760.
    [75] W. Gulbiński, S. Mathur, H. Shen, T. Suszko, A. Gilewicz, B. Warcholiński, Evaluation of phase, composition, microstructure and properties in TiC/aC: H thin films deposited by magnetron sputtering, Applied Surface Science, 239 (2005) 302-310.
    [76] W. Cui, Q. Lai, L. Zhang, F. Wang, Quantitative measurements of sp 3 content in DLC films with Raman spectroscopy, Surface and Coatings Technology, 205 (2010) 1995-1999.
    [77] C. Casiraghi, A. Ferrari, J. Robertson, Raman spectroscopy of hydrogenated amorphous carbons, Physical Review B, 72 (2005) 085401.
    [78] A.C. Ferrari, J. Robertson, Interpretation of Raman spectra of disordered and amorphous carbon, Physical Review B, 61 (2000) 14095.
    [79] F. Tuinstra, J.L. Koenig, Raman spectrum of graphite, The Journal of Chemical Physics, 53 (1970) 1126-1130.
    [80] G. Irmer, A. Dorner‐Reisel, Micro‐Raman Studies on DLC coatings, Advanced Engineering Materials, 7 (2005) 694-705.
    [81] A.C. Ferrari, J. Robertson, Raman spectroscopy of amorphous, nanostructured, diamond–like carbon, and nanodiamond, Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 362 (2004) 2477-2512.
    [82] A. Singha, A. Ghosh, A. Roy, N.R. Ray, Quantitative analysis of hydrogenated diamondlike carbon films by visible Raman spectroscopy, Journal of Applied Physics, 100 (2006) 044910.
    [83] H.J. Bowley, D.L. Gerrard, J.D. Louden, G. Turrell, D.J. Gardiner, P.R. Graves, Practical raman spectroscopy, Springer Science & Business Media2012.
    [84] 林麗娟, X 光繞射原理及其應用, 工業材料, 86期, 100-109 (1994).
    [85] https://fys.kuleuven.be/iks/nvsf/experimental-facilities/x-ray-diffraction-2013-bruker-d8-discover.
    [86] G. Janssen, M. Abdalla, F. Van Keulen, B. Pujada, B. Van Venrooy, Celebrating the 100th anniversary of the Stoney equation for film stress: Developments from polycrystalline steel strips to single crystal silicon wafers, Thin Solid Films, 517 (2009) 1858-1867.
    [87] S. Vepřek, The search for novel, superhard materials, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 17 (1999) 2401-2420.
    [88] W.C. Oliver, G.M. Pharr, An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments, Journal of Materials Research, 7 (1992) 1564-1583.
    [89] W.C. Oliver, G.M. Pharr, Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology, Journal of Materials Research, 19 (2004) 3-20.
    [90] H. Wang, S. Zhang, Y. Li, D. Sun, Bias effect on microstructure and mechanical properties of magnetron sputtered nanocrystalline titanium carbide thin films, Thin Solid Films, 516 (2008) 5419-5423.
    [91] O. Fouad, A.K. Rumaiz, S.I. Shah, Reactive sputtering of titanium in Ar/CH4 gas mixture: Target poisoning and film characteristics, Thin Solid Films, 517 (2009) 5689-5694.
    [92] M.-P. Delplancke, V. Vassileris, R. Winand, Structure and composition of hydrogenated TixCy thin films prepared by reactive sputtering, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 13 (1995) 1104-1110.
    [93] D. Depla, R. De Gryse, Target poisoning during reactive magnetron sputtering: Part I: the influence of ion implantation, Surface and Coatings Technology, 183 (2004) 184-189.
    [94] V.L. Kuznetsov, A.L. Chuvilin, Y.V. Butenko, I.Y. Mal'kov, V.M. Titov, Onion-like carbon from ultra-disperse diamond, Chemical Physics Letters, 222 (1994) 343-348.
    [95] D. Ugarte, Onion-like graphitic particles, Carbon, 33 (1995) 989-993.
    [96] A.V. Gubarevich, J. Kitamura, S. Usuba, H. Yokoi, Y. Kakudate, O. Odawara, Onion-like carbon deposition by plasma spraying of nanodiamonds, Carbon, 41 (2003) 2601-2606.
    [97] X. Li, B. Bhushan, A review of nanoindentation continuous stiffness measurement technique and its applications, Materials Characterization, 48 (2002) 11-36.
    [98] M. Stueber, H. Holleck, H. Leiste, K. Seemann, S. Ulrich, C. Ziebert, Concepts for the design of advanced nanoscale PVD multilayer protective thin films, J. Alloy. Compd., 483 (2009) 321-333.
    [99] P.C. Yashar, W.D. Sproul, Nanometer scale multilayered hard coatings, Vacuum, 55 (1999) 179-190.
    [100] R. Saha, W.D. Nix, Effects of the substrate on the determination of thin film mechanical properties by nanoindentation, Acta Materialia, 50 (2002) 23-38.
    [101] S. Zhang, D. Sun, Y. Fu, H. Du, Toughness measurement of thin films: a critical review, Surface and Coatings Technology, 198 (2005) 74-84.

    無法下載圖示 校內:2022-09-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE