| 研究生: |
林冠宏 Lin, Kuan-Hung |
|---|---|
| 論文名稱: |
應用DQEM分析具Pasternak基座之變斷面剪變形樑的結構問題 Solution of Timoshenko Beam on Pasternak foundation by DQEM |
| 指導教授: |
陳長鈕
Chen, Chang-New |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 系統及船舶機電工程學系 Department of Systems and Naval Mechatronic Engineering |
| 論文出版年: | 2004 |
| 畢業學年度: | 92 |
| 語文別: | 中文 |
| 論文頁數: | 71 |
| 中文關鍵詞: | 基座 、數值積分表示微分元素法 |
| 外文關鍵詞: | Pasternak, DQEM |
| 相關次數: | 點閱:59 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由陳長鈕教授所研究開發出來的數值積分表示微分元素法為一種分析連體力學問題的數值方法。數值積分表示微分元素法是將欲分析的結構物分割成有限個元素,在利用數值積分表示微分的技巧,對定義各個元素內的統御微分或偏微分方程式,兩個相鄰的元素相連接的相鄰邊界上之轉接條件式及領域邊界上之邊界條件式,做數值的離散化。最後由組合定義於結構物所有的離散點處的離散化基本關係式,可得到結構物的離散方程式系統,進而求得數值解;此數值分析法除了能有系統地編成電腦程式外,因其具有較高的耦合特性,且考慮所有的基本條件,故使用較少的離散點就能得到收斂,可有效地求得精確的解,大幅降低計算機的運算量。
本篇論文應用數值積分表示微分元素法,來分析具Pasternak基座之變斷面剪變形樑之靜變形及振動問題,並且編寫求解的電腦程式,將其用於分析數個驗證例,以證明本方法分析結構物之優越性。
The differential quadrature element method (DQEM) proposed by Dr. C.N. Chen is a numerical analysis method for analyzing continuum mechanics problems. Like FEM, in using DQEM to solve a problem the domain is separated into many elements. The DQ discretization is carried out on an element-basis. The discretized governing differential or partial differential equations defined on the elements, transition conditions on inter-element boundaries and boundary conditions are assembled to obtain an overall algebraic system. The numerical procedure of this method can systematically implemented into a computer program. The coupling of solutions at discrete points is strong. In addition, all fundamental relations are considered in constructing the overall discrete algebraic system. Consequently, convergence can be assured by using less discrete points, and accurate results can be obtained by using less arithmetic operations which can reduce the computer CPU time required.
This thesis involves the application of DQEM to the deflection and vibration analyses of non-uniform Timoshenko beams on Pasternak foundation, and the related computer problem is implemented. Sample problems of static deformation and free vibration are analyzed. They prove that the developed DQEM analysis model is excellent.
【1】 C. N. Chen “A differential Quadrature Element Method”, Proc. 1st Intl. Conf. Engr. Computation and Computer Simulation, Changsha, China, 25-35, 1995.
【2】 R. E. Bellman and J. Casti “Differential Quadrature and Long-term Itegration”, Journal of mathematical Analysis and Application, Vol. 34, pp. 235-238, 1971.
【3】 F. Civan and C. M. Sliepcevich “Differential Quadrature to Transport Processes”, Journal of mathematical Analysis and Application, Vol. 93, pp. 206-221, 1983.
【4】 F. Civan and C. M. Sliepcevich “Differenial Quadrature for Multi-dimentional Problems”, Journal mathematical Analysis and Application, Vol, 101, pp. 423-443, 1984
【5】 S. K. Jang, C. W. Bert and A. G. Striz “Application of Differential Quadrature to Static Analysis of Structural Components”, Int. J. Numer. Methods eng., 28, 561-577, 1989.
【6】 Volterra, Enpico and Gaines, J. H. “Advanced strength of materials” , Prentice-Hall, pp. 230-235, 1971.
【7】 Timoshenko, and Gere “Theory of Elastic Stability” , McGraw-Hill, 1961.
【8】 H. DU, M. K. Liew and M. K. Lim “Generalized Differential Quadrature Method for Buckling Analysis”, Journal of Engineering Mechanics, Vol. 122, No. 2, Frbruary 1996.
【9】 H. Reismann & P. Pawlik “Elasticity Theory and Application”, Wiley-Interscience, 226-228, 1980.
【10】 H. DU, M. K. Lim and R. M. Lin “Application of Generalized Differential Quadrature Method to Structural Problems”, International Journal for Numerical Method in Engineering, Vol. 37, 1881-1896, 1996.
【11】 C. N. Chen “Generalization of Differential Quadrature Discretization”, Numerical Algorithms, Vol. 22, 167-182, 1999.
【12】 Chang Shu and Bryan E. Richard “ Application of Generalized Differential Quadrature to solve Two-Dimensional Incomoressible Navier-Stokes Equations”, International Journal for Numerical Method in Fluids, Vol. 15, 791-798, 1992.
【13】 G. R. Cowper “The Shear Coefficient in Timoshenko’s Beam”, Journal of Applied Mechanics, pp. 335-340, 1966.
【14】 C. M. Wang, K. Y. Lam and X. Q. He “Exact Solutions for Timoshenko Beams on Elastic Foundations Using Green’s Functions”, MECH. STRUCT. & MACH., 26(1), 101-113, 1998.
【15】 M. El-Mously “Fundamental Frequencies of Timoshenko Beams Mounted on Pasternak Foundation”, Journal of Sound and Vibration, 228(2), 452-457, 1999.
【16】 T. M. Wang and J. E. Stephens “ Natural Frequencies of Timoshenko Beams on Pasternak foundations”, Vol. 51, 149-155, 1977.
【17】 J.B.CARR “The Effect of Shear Flexibility and Rotatory Inertia on the Natural Frequencies of Uniform Beams”, The Aeronautical Quarterly, Vol. 21, 79-90, 1970.
【18】 C. N. Chen “Differential Quadrature Element Analysis Using Extended Differential Quadrature”, Computers and Mathematics with Applications, 65-79, 39(2000).
【19】 林育男 “數值積分表示微分元素法的研究”, 國立成功大學造船及船舶機械工程研究所碩士論文, 1995.
【20】 宋治勇 “數值積分表示微分元素法振動分析模式”, 國立成功大學造船及船舶機械工程研究所碩士論文, 1996.
【21】 黃志偉 “數值積分表示微分元素法剪變形變斷面樑分析模式” , 國立成功大學造船及船舶機械工程研究所碩士論文, 1997.
【22】 謝明錡 “數值積分表示微分元素法具彈性基座樑分析模式” ,
國立成功大學造船及船舶機械工程研究所碩士論文, 1997.
【23】 林宗賢 “應用 DQEM 求解具或不具彈性基座的曲樑問題” , 國立成功大學造船及船舶機械工程研究所碩士論文, 1999.
【24】 李盈賢 “應用 DQEM 分析具彈性基座之變斷面剪變形粱”, 國立成功大學造船及船舶機械工程研究所碩士論文, 2000.
【25】 王以震 “應用DQEM於求解具剪變形之任意複合變斷面樑結構物之靜變形問題” , 國立成功大學造船及船舶機械工程研究所碩士論文, 2001.
【26】 官志達 “應用DQEM於求解具剪變形之任意複合變斷面樑結構物之振動問題” , 國立成功大學造船及船舶機械工程研究所碩士論文, 2001.
【27】 Raymond J. Roark& Warren C. Young 著, 王大靜 譯, “應力與應變之公式” , 大孚書局, pp. 324-334, 1979.
【28】 Volterra, Enpico and Gaines, J. H. 著, 唐山 譯, “高等材料力學” , 正文出版社, pp.235-359, 1980.
【29】 Oktay Ural “有限元素導論”, 科技圖書股份有限公司.