簡易檢索 / 詳目顯示

研究生: 王睿甫
Wang, Jui-Fu
論文名稱: 碳化矽粉體氣凝膠應用於海水淡化
SiC Powder Aerogels For Desalination
指導教授: 劉全璞
Liu, Chuan-Pu
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 116
中文關鍵詞: 氣凝膠界面蒸發碳化矽
外文關鍵詞: aerogel, interfacial evaporation, SiC
相關次數: 點閱:50下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著全球淡水需求上升與水資源匱乏,海水淡化技術成為重要的永續解方,結合再生能源的太陽能界面蒸發海水淡化系統逐漸受到重視。該技術具有低能耗與環境友善特性,但仍面臨蒸發效率不足、熱損失、鹽分積累與生物污染等挑戰。研究指出,除光能吸收外,蒸發器的結構設計與能量管理對提升性能至關重要。近年來,氣凝膠因其高孔隙率、優異熱絕緣與低密度特性展現潛力,然而,產水速率偏低與機械穩定性仍需改善,須進一步優化材料與系統整合。碳化矽具備優異的熱穩定性與化學惰性,已廣泛應用於海水淡化中的過濾器與多孔膜,然而其傳統製程需高達1000~2000 °C的熱處理,高能耗與製程複雜度限制其應用拓展。
    本研究選用具高比表面積的粉體碳化矽,直接合成粉體結構氣凝膠作為多孔基質及濾材。透過調控製程參數與添加劑比例,並採用600°C的低溫熱處理,優化其機械穩定性與蒸發性能,控制孔隙率與微觀結構形貌,可實現高孔隙率、低表面熱傳導係數,具備富含中孔與巨孔的多孔粉體氣凝膠結構,有助於界面蒸發與降低熱傳導耗損。進一步透過簡易塗佈技術優化氣凝膠表面功能,探討不同塗層對界面蒸發效率的影響。結果顯示,塗覆特定光熱材料後能有效提升蒸發速率與光學轉換效率,其中Ti3C2Tx塗層的SiC氣凝膠蒸發速率可達1.909 kg/m2hr,1699.41kJ/kg的等效蒸發焓,光學轉換效率91.17%。亦透過中間水與自由水比值以及熱傳導係數討論結構與材料組合對蒸發效率及光熱轉換效率的關聯。應用於海水脫鹽測試中,純化水的主要陽離子降低達三個數量級,平均鹽類過濾率達到99.65%。

    This study employed high-specific-surface-area silicon carbide (SiC) powder to directly synthesize a powder-based aerogel as a porous matrix and filtration medium. By tuning fabrication parameters and additive ratios, and applying a low-temperature heat treatment at 600 °C, the mechanical stability and evaporation performance were optimized. The resulting structure exhibited high porosity, low surface thermal conductivity, and a porous framework enriched with mesopores and macropores, facilitating interfacial evaporation and minimizing conductive heat loss. Furthermore, surface functionality was enhanced through a simple coating technique, enabling a systematic investigation of different coatings on interfacial evaporation efficiency. The results demonstrated that applying specific photothermal materials significantly improved the evaporation rate and optical conversion efficiency. The ratio of intermediate water to free water and thermal conductivity were also analyzed to elucidate the relationship between structural design and performance. When applied to seawater desalination, the material exhibited excellent salt rejection capability, achieving high desalination efficiency and producing purified water that meets quality standards.

    摘要 I Extended Abstract II Summary II Introduction II Experimental III Result and Discussion IV Conclusion V 誌謝 X 目錄 XI 表目錄 XV 圖目錄 XVI Chapter 1. 緒論 1 1.1 前言 1 1.2 研究動機與目的 2 Chapter 2. 文獻回顧 3 2.1 海水淡化 3 2.1.1 海水淡化源起 3 2.1.2 熱能式與膜式淡化 5 2.1.3 薄膜蒸餾 10 2.1.4 太陽能驅動界面蒸發 11 2.2 氣凝膠 14 2.2.1 結構特性 14 2.2.2 製程與乾燥行為 16 2.2.3 冷凍鑄造 19 2.3 碳化矽 23 2.3.1 晶體結構與物理性質 23 2.3.2 淡化應用 24 Chapter 3. 實驗步驟和研究方法 27 3.1 實驗流程 27 3.1.1 實驗材料 27 3.1.2 前驅物製備 27 3.1.3 冷凍乾燥 28 3.1.4 退火及塗佈 29 3.2 性質分析 30 3.2.1 元素組成分析 30 3.2.2 機械性質分析 32 3.2.3 孔洞結構分析 33 3.2.4 表面形貌分析 34 3.2.5 微結構分析 35 3.3 海水淡化分析 36 3.3.1 水性分析 36 3.3.2 光熱效率分析 37 3.3.3 鹽水純化測量 39 Chapter 4. 結果與討論 40 4.1 氣凝膠性質分析 40 4.1.1 元素分析 40 4.1.2 機械性質分析 41 4.1.3 孔洞結構分析 45 4.1.4 表面形貌分析 55 4.1.5 微結構分析 61 4.2 海水淡化 66 4.2.1 塗層性質分析 66 4.2.2 光熱效率分析 67 4.2.3 水性分析 73 4.2.4 純化效果分析 78 Chapter 5. 結論 81 參考文獻 82

    1. Gude, V.G., Desalination and water reuse to address global water scarcity. REVIEWS IN ENVIRONMENTAL SCIENCE AND BIO-TECHNOLOGY, 2017. 16(4): p. 591-609.
    2. Mundu, M.M., et al., Solar-Powered Desalination Technologies for Sustainable Water Security Solutions. International Journal of Energy Research, 2025. 2025(1): p. 3482306.
    3. Wu, X., et al., Interfacial Solar Evaporation: From Fundamental Research to Applications. Advanced Materials, 2024. 36(23): p. 2313090.
    4. Zhou, J., et al., Development and Evolution of the System Structure for Highly Efficient Solar Steam Generation from Zero to Three Dimensions. Advanced Functional Materials, 2019. 29(50): p. 1903255.
    5. Xia, Y., et al., Solar-driven brine desalination and concentration by controlled salt excretion. EcoMat, 2021. 3(6): p. e12143.
    6. Lamy-Mendes, A., R.F. Silva, and L. Durães, Advances in carbon nanostructure–silica aerogel composites: a review. Journal of Materials Chemistry A, 2018. 6(4): p. 1340-1369.
    7. Rastgar, M., et al., Aerogels in passive solar thermal desalination: a review. Journal of Materials Chemistry A, 2022. 10(35): p. 17857-17877.
    8. Hotza, D., et al., Silicon carbide filters and porous membranes: A review of processing, properties, performance and application. JOURNAL OF MEMBRANE SCIENCE, 2020. 610.
    9. Gude, V.G. and N. Nirmalakhandan, Desalination at low temperatures and low pressures. Desalination, 2009. 244(1): p. 239-247.
    10. Vörösmarty, C.J., et al., Global Water Resources: Vulnerability from Climate Change and Population Growth. Science, 2000. 289(5477): p. 284-288.
    11. van Vliet, M.T.H., M. Flörke, and Y. Wada, Quality matters for water scarcity. Nature Geoscience, 2017. 10(11): p. 800-802.
    12. Jones, E., et al., The state of desalination and brine production: A global outlook. Science of the Total Environment, 2019. 657: p. 1343-1356.
    13. Gude, V.G., Desalination and sustainability – An appraisal and current perspective. Water Research, 2016. 89: p. 87-106.
    14. Gude, V.G., Geothermal source potential for water desalination – Current status and future perspective. Renewable and Sustainable Energy Reviews, 2016. 57: p. 1038-1065.
    15. Gude, V.G., N. Nirmalakhandan, and S. Deng, Renewable and sustainable approaches for desalination. Renewable and Sustainable Energy Reviews, 2010. 14(9): p. 2641-2654.
    16. Durkaieswaran, P. and K.K. Murugavel, Various special designs of single basin passive solar still – A review. Renewable and Sustainable Energy Reviews, 2015. 49: p. 1048-1060.
    17. Chauhan, V.K., et al., A comprehensive review of direct solar desalination techniques and its advancements. Journal of Cleaner Production, 2021. 284: p. 124719.
    18. Chen, J.P., et al., Desalination of Seawater by Reverse Osmosis, in Membrane and Desalination Technologies, L.K. Wang, et al., Editors. 2011, Humana Press: Totowa, NJ. p. 559-601.
    19. Qasim, M., et al., Reverse osmosis desalination: A state-of-the-art review. Desalination, 2019. 459: p. 59-104.
    20. Goh, P.S. and A.F. Ismail, A review on inorganic membranes for desalination and wastewater treatment. Desalination, 2018. 434: p. 60-80.
    21. He, Z., et al., Ceramic-based membranes for water and wastewater treatment. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019. 578: p. 123513.
    22. Elma, M., et al. Performance and Long Term Stability of Mesoporous Silica Membranes for Desalination. Membranes, 2013. 3, 136-150 DOI: 10.3390/membranes3030136.
    23. Eray, E., et al., A roadmap for the development and applications of silicon carbide membranes for liquid filtration: Recent advancements, challenges, and perspectives. Chemical Engineering Journal, 2021. 414: p. 128826.
    24. Gude, V.G., Energy storage for desalination processes powered by renewable energy and waste heat sources. Applied Energy, 2015. 137: p. 877-898.
    25. Yarlagadda, S., et al., Potable water recovery from As, U, and F contaminated ground waters by direct contact membrane distillation process. Journal of Hazardous Materials, 2011. 192(3): p. 1388-1394.
    26. Camacho, L.M., et al. Advances in Membrane Distillation for Water Desalination and Purification Applications. Water, 2013. 5, 94-196 DOI: 10.3390/w5010094.
    27. Boffa, V., et al., Fabrication and Surface Interactions of Super-Hydrophobic Silicon Carbide for Membrane Distillation. NANOMATERIALS, 2019. 9(8).
    28. Sharon, H. and K.S. Reddy, A review of solar energy driven desalination technologies. Renewable and Sustainable Energy Reviews, 2015. 41: p. 1080-1118.
    29. Ghaffour, N., et al., Renewable energy-driven desalination technologies: A comprehensive review on challenges and potential applications of integrated systems. Desalination, 2015. 356: p. 94-114.
    30. Sharshir, S.W., et al., Factors affecting solar stills productivity and improvement techniques: A detailed review. Applied Thermal Engineering, 2016. 100: p. 267-284.
    31. Liu, G., J. Xu, and K. Wang, Solar water evaporation by black photothermal sheets. Nano Energy, 2017. 41: p. 269-284.
    32. Alemán, J.V., et al., Definitions of terms relating to the structure and processing of sols, gels, networks, and inorganic-organic hybrid materials (IUPAC Recommendations 2007). Pure and Applied Chemistry, 2007. 79(10): p. 1801-1829.
    33. Li, L., et al., Flexible Nanofiber-Reinforced Aerogel (Xerogel) Synthesis, Manufacture, and Characterization. ACS Applied Materials & Interfaces, 2009. 1(11): p. 2491-2501.
    34. Li, H., et al., Wood-inspired high strength and lightweight aerogel based on carbon nanotube and nanocellulose fiber for heat collection. Carbohydrate Polymers, 2022. 280: p. 119036.
    35. Cheng, Y., et al., Super-elasticity at 4K of covalently crosslinked polyimide aerogels with negative Poisson's ratio. NATURE COMMUNICATIONS, 2021. 12(1).
    36. Hostler, S.R., et al., Thermal conductivity of a clay-based aerogel. International Journal of Heat and Mass Transfer, 2009. 52(3): p. 665-669.
    37. Androulidakis, C., et al., Multi-functional 2D hybrid aerogels for gas absorption applications. Scientific Reports, 2021. 11(1): p. 13548.
    38. Yang, Y., et al., Design of compressible and elastic N-doped porous carbon nanofiber aerogels as binder-free supercapacitor electrodes. JOURNAL OF MATERIALS CHEMISTRY A, 2020. 8(33): p. 17257-17265.
    39. Matter, F., et al., Shaping nanoparticle-based aerogels for efficient light-driven catalysis. JOURNAL OF MATERIALS CHEMISTRY A, 2025.
    40. Yuan, Y.S. and N. Solin, Protein-Based Flexible Conductive Aerogels for Piezoresistive Pressure Sensors. ACS APPLIED BIO MATERIALS, 2022.
    41. Zeng, Z.H., et al., Nanocellulose-MXene Biomimetic Aerogels with Orientation-Tunable Electromagnetic Interference Shielding Performance. ADVANCED SCIENCE, 2020. 7(15).
    42. Shu, T., et al., Unidirectional freezing robust PPy@GO-SA aerogel for stable and efficient solar desalination. Desalination, 2025. 593: p. 118208.
    43. Song, Y., et al., Grass-modified graphene aerogel for effective oil-water separation. Process Safety and Environmental Protection, 2019. 129: p. 119-129.
    44. Xu, Y.F., et al., Highly efficient solar driven cogeneration of freshwater and electricity. Journal of Materials Chemistry A, 2023. 11(4): p. 1866-1876.
    45. Han, H.K., et al., Removal of cationic dyes from aqueous solution by adsorption onto hydrophobic/hydrophilic silica aerogel. COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2016. 509: p. 539-549.
    46. S, S.S., N. Rai, and I. Chauhan, Multifunctional Aerogels: A comprehensive review on types, synthesis and applications of aerogels. Journal of Sol-Gel Science and Technology, 2023. 105(2): p. 324-336.
    47. Rusch, P., et al., Versatile route to core–shell reinforced network nanostructures. Nanoscale, 2019. 11(32): p. 15270-15278.
    48. Miao, M.L., et al., 3D-Printed Mullite-Reinforced SiC-Based Aerogel Composites. SMALL, 2024. 20(35).
    49. Jiang, Y.Q., et al., Direct 3D Printing of Ultralight Graphene Oxide Aerogel Microlattices. ADVANCED FUNCTIONAL MATERIALS, 2018. 28(16).
    50. Ma, H., et al., Simulation and Analysis of Mechanical Properties of Silica Aerogels: From Rationalization to Prediction. Materials, 2018. 11(2): p. 214.
    51. Su, L., et al., Ultralight, Recoverable, and High-Temperature-Resistant SiC Nanowire Aerogel. ACS Nano, 2018. 12(4): p. 3103-3111.
    52. Şahin, İ., et al., Kinetics of Supercritical Drying of Gels. Gels, 2018. 4(1): p. 3.
    53. Scherer, G.W., et al., Shrinkage of silica gels aged in TEOS. Journal of Non-Crystalline Solids, 1996. 202(1): p. 42-52.
    54. Scherer, G.W. and D.M. Smith, Cavitation during drying of a gel. Journal of Non-Crystalline Solids, 1995. 189(3): p. 197-211.
    55. Vareda, J.P., A. Lamy-Mendes, and L. Durães, A reconsideration on the definition of the term aerogel based on current drying trends. Microporous and Mesoporous Materials, 2018. 258: p. 211-216.
    56. Smirnova, I. and P. Gurikov, Aerogel production: Current status, research directions, and future opportunities. The Journal of Supercritical Fluids, 2018. 134: p. 228-233.
    57. Soleimani Dorcheh, A. and M.H. Abbasi, Silica aerogel; synthesis, properties and characterization. Journal of Materials Processing Technology, 2008. 199(1): p. 10-26.
    58. Araki, K. and J.W. Halloran, Porous ceramic bodies with interconnected pore channels by a novel freeze casting technique. JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2005. 88(5): p. 1108-1114.
    59. Freytag, A., et al., Versatile Aerogel Fabrication by Freezing and Subsequent Freeze-Drying of Colloidal Nanoparticle Solutions. Angewandte Chemie International Edition, 2016. 55(3): p. 1200-1203.
    60. Shao, G., et al., Freeze Casting: From Low-Dimensional Building Blocks to Aligned Porous Structures—A Review of Novel Materials, Methods, and Applications. Advanced Materials, 2020. 32(17): p. 1907176.
    61. Asthana, R. and S.N. Tewari, THE ENGULFMENT OF FOREIGN PARTICLES BY A FREEZING INTERFACE. JOURNAL OF MATERIALS SCIENCE, 1993. 28(20): p. 5414-5425.
    62. Zhang, H.F., et al., Aligned two- and three-dimensional structures by directional freezing of polymers and nanoparticles. NATURE MATERIALS, 2005. 4(10): p. 787-793.
    63. Wegst, U.G.K., et al., Biomaterials by freeze casting. PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2010. 368(1917): p. 2099-2121.
    64. Nelson, I. and S.E. Naleway, Intrinsic and extrinsic control of freeze casting. JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2019. 8(2): p. 2372-2385.
    65. Deville, S., E. Saiz, and A.P. Tomsia, Ice-templated porous alumina structures. ACTA MATERIALIA, 2007. 55(6): p. 1965-1974.
    66. Cheng, Z., et al., High thermal conductivity in wafer-scale cubic silicon carbide crystals. Nature Communications, 2022. 13(1): p. 7201.
    67. Kimoto, T., Review High-voltage SiC power devices for improved energy efficiency. PROCEEDINGS OF THE JAPAN ACADEMY SERIES B-PHYSICAL AND BIOLOGICAL SCIENCES, 2022. 98(4): p. 161-189.
    68. Buffolo, M., et al., Review and Outlook on GaN and SiC Power Devices: Industrial State-of-the-Art, Applications, and Perspectives. Ieee Transactions on Electron Devices, 2024. 71(3): p. 1344-1355.
    69. Ye, X., et al., Hollow SiC foam with a double interconnected network for superior microwave absorption ability. Journal of Alloys and Compounds, 2020. 817: p. 153276.
    70. Van Trinh, P., et al., Mechanical and wear properties of SiCp/CNT/Al6061 hybrid metal matrix composites. Diamond and Related Materials, 2022. 124: p. 108952.
    71. Zhao, H.R., et al., Size-dependent electromagnetic wave absorption of 3C-SiC particles. JOURNAL OF MATERIALS CHEMISTRY C, 2024. 12(35): p. 14054-14061.
    72. Jian, J.X. and J.W. Sun, A Review of Recent Progress on Silicon Carbide for Photoelectrochemical Water Splitting. SOLAR RRL, 2020. 4(7).
    73. Muranaka, T., et al., Superconductivity in carrier-doped silicon carbide. Science and Technology of Advanced Materials, 2008. 9(4).
    74. Omar, N.M.A., et al., Bottlenecks and recent improvement strategies of ceramic membranes in membrane distillation applications: A review. JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2022. 42(13): p. 5179-5194.
    75. Miao, K., et al., Robust hydrophobic ceramic membrane for high-salinity wastewater separation via membrane distillation. Desalination, 2024. 592: p. 118091.
    76. Bose, J., et al., Synthesis and characterization of polyvinylidene fluoride/functionalized silicon carbide nanocomposite membrane for water treatment. JOURNAL OF POLYMER RESEARCH, 2023. 30(6).
    77. Chemistry, R.S.o. Tetraethyl orthosilicate. ChemSpider; Available from: https://www.chemspider.com/Chemical-Structure.6270.html.
    78. Liu, H.Z., C.X. Jia, and Y.S. Yan, Synthesis, microstructure, and luminescence properties of 3C-SiC powders. Journal of Materials Science-Materials in Electronics, 2015. 26(6): p. 3916-3920.
    79. Ortiz, A.L., et al., X-ray powder diffraction analysis of a silicon carbide-based ceramic. Materials Letters, 2001. 49(2): p. 137-145.
    80. Ketcham, R.A. and W.D. Carlson, Acquisition, optimization and interpretation of X-ray computed tomographic imagery: applications to the geosciences. Computers & Geosciences, 2001. 27(4): p. 381-400.
    81. Zhuo, C., et al. Research status and prospect of ring artifact correction method for x-ray CT. in Proc.SPIE. 2024.
    82. International Union of, P. and C. Applied, mesopore.
    83. Xu, Z., et al., Study on the electromagnetic wave absorption performance of Ti3C2 MXene with different etching states. Journal of Materials Science, 2023. 58(11): p. 4824-4839.
    84. Tuinstra, F. and J.L. Koenig, Raman Spectrum of Graphite. The Journal of Chemical Physics, 1970. 53(3): p. 1126-1130.
    85. Sadezky, A., et al., Raman microspectroscopy of soot and related carbonaceous materials: Spectral analysis and structural information. Carbon, 2005. 43(8): p. 1731-1742.
    86. Wei, D., et al., Water Activation in Solar-Powered Vapor Generation. Advanced Materials, 2023. 35(47): p. 2212100.
    87. Laaksonen, A. and J. Malila, Chapter 3 - Properties of water and ice, in Nucleation of Water, A. Laaksonen and J. Malila, Editors. 2022, Elsevier. p. 31-44.
    88. Xue, Y. and S. Igari, Reference Solar Spectra and Their Generation Models. Journal of Science and Technology in Lighting, 2023. 46: p. 6-18.
    89. Wang, J.M. and T.J. Hou, Application of Molecular Dynamics Simulations in Molecular Property Prediction. 1. Density and Heat of Vaporization. Journal of Chemical Theory and Computation, 2011. 7(7): p. 2151-2165.
    90. Luzar, A. and D. Chandler, Hydrogen-bond kinetics in liquid water. Nature, 1996. 379(6560): p. 55-57.
    91. Zang, L., et al., Nanofibrous hydrogel-reduced graphene oxide membranes for effective solar-driven interfacial evaporation and desalination. Chemical Engineering Journal, 2021. 422: p. 129998.
    92. Zhou, X., et al., Architecting highly hydratable polymer networks to tune the water state for solar water purification. Science Advances, 2019. 5(6): p. eaaw5484.
    93. Organization, W.H., Safe Drinking-water from Desalination. 2011.

    無法下載圖示 校內:2030-08-25公開
    校外:2030-08-25公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE