簡易檢索 / 詳目顯示

研究生: 蔡鎧蔚
Tsai, Kai-Wei
論文名稱: 界面修飾策略於高效率鈣鈦礦太陽能電池與高分子發光二極體
Strategies of Interfacial Modification for High Efficient Perovskite Solar Cells and Polymer Light-Emitting Diodes
指導教授: 溫添進
Wen, Ten-Chin
學位類別: 博士
Doctor
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 130
中文關鍵詞: 鈣鈦礦太陽能電池高分子發光二極體界面修飾層界面偶極功函數;電洞阻擋混合物實驗設計
外文關鍵詞: perovskite solar cells, polymer light-emitting diodes, interfacial layers, interfacial dipole, work function, hole blocking, mixture design
相關次數: 點閱:125下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本論文中,三種界面修飾策略,界面能階拉齊、平衡載子傳輸、以及平整的表面形貌被應用於提升鈣鈦礦太陽能電池以及高分子發光二極體之效率。在有機半導體元件中,能階的不匹配導致的界面能障、載子於界面累積導致的復合現象、以及不平整的界面層導致漏電流的形成,會降低元件的展現。因此我採取上述三種策略解決上述三種問題。
    在第一部分,我們採取界面能階拉齊的策略來提升電洞於銦錫氧化物電極(ITO)的注入與收集。具有親水性基團的溴化銨(NH4Br)塗佈於ITO上利用介面偶極增加其功函數,X光光電子圖譜(XPS)證實了NH4Br與ITO間氫鍵的形成以架構介面偶極來拉低真空能階以增進電洞注入能力於高分子發光二極體。藉由上述的成果,鈣鈦礦中的甲基胺離子也應該能與ITO形成氫鍵,因此我們直接利用溶液沖洗製程製備鈣鈦礦薄膜於ITO上,並達到11.02%的光電轉換效率。該高效率歸功於氫鍵的形成所架構的界面偶極以降低ITO功函數,以達到具有1.01伏特的開路電壓。
    在第二部分,我們利用提升聚二氧乙基噻吩聚苯乙烯磺酸(PEDOT:PSS )之導電度以及利用四辛基溴化銨(TOAB)的電洞阻擋能力來達到平衡載子傳輸的策略分別應用於鈣鈦礦太陽能電池以及高分子發光二極體中。不平衡的載子傳輸會導致載子於界面的累積已產生復合的作用,因此利用溴化銅(CuBr2)對PEDOT:PSS進行處理,其電阻值從115.6 降低至 0.082 Ω.cm。該電阻值的降低提升了1.11倍的短路電流以及達到最佳14.59%的光電轉換效率。同時再經由CuBr2處理過的低導電度的PEDOT:PSS,其短路電流更有1.86倍的提升,說明了效率的提升來自於平衡載子的傳輸。XPS的圖譜中,經過CuBr2處理過後PEDOT對PSS比例的提升說明了導電度提升了來源是移除了絕緣PSS的部分。在高分子發光二極體中,大部分的發光層材料為P型的半導體,有效地阻擋電洞有利於效率的提升,因此我們利用TOAB作為電子注入層以提升元件效率。為了探討TOAB的電洞阻擋能力,我們組裝具有不同能階之綠光聚芴高分子(G-PF)、聚(亞苯基亞乙烯基)(SY-PPV)以及聚(3-己烷基噻吩)(P3HT)之元件。相較於鈣作為陰極的元件,由於TOAB的電洞阻擋能力使其具有較高的發光效率。同時探討鋁元件與TOAB元件電流的比值,發現TOAB的電洞阻擋能力隨著電洞注入能障的下降而有所提升。由於其特性,甚至能讓P3HT元件具有401(cd m-2)的亮度值。
    在第三部分,我們利用三成分的電子注入層,乙氧基聚乙烯亞胺(PEIE)、聚乙烯吡咯烷酮 (PVP)、TOAB以達到平整的修飾層表面形貌。從原子力顯微鏡中發現加入TOAB可以有效地降低PEIE和PVP之間產生的聚集現象,而從XPS圖譜中可以發現TOAB的引入可以有效地降低PEIE和PVP之間的氫鍵而達到平整的薄膜。因此,三成分電子注入層之元件具有比PEIE的元件高1.12以及1.09倍的發光效率以及功率轉換效率,以及優於PEIE混PVP兩成分元件之效率展現。

    In this dissertation, three interfacial modification strategies of energy level alignment, balance charge transporting, and smooth surface morphology were applied on perovskite solar cells (PVSCs) and polymer light-emitting diodes (PLEDs) for achieving high efficiency. In the organic optoelectronic devices, three problems reduce the device performance, injection/extraction barrier energy from the mismatch with work function of electrode and energy level of organic semiconductors, recombination from the carrier accumulation in solar cells, and leakage current from the incomplete coverage of interfacial layer. Here, three strategies were applied for solving above problems for enhancing device performance.
    In the first part, energy level alignment by interfacial dipole was applied for enhancing the hole injection and extraction. The hydrophilic ammonium bromide (NH4Br) with ammonium group was spun-cast atop the ITO to increase its work function via interfacial dipole. The hydrogen binding formation between ITO and NH4Br by the XPS spectra build the interfacial dipole with the direction toward ITO to lower down the vacuum level of ITO and enhance the hole injection. With that successful results, the methyl ammonium iodide part in CH3NH3PbI3 might create hydrogen bonding with ITO. Hence, perovskite thin film was prepared directly atop ITO electrode via solvent washing process to achieve 11.02 % of power conversion efficiency (PCE). The high efficiency results from the enhancement of ITO work function and hydrogen boning formation to increase the Voc to 1.01 V.
    In the second part, balance charge transporting was applied via increasing the conductivity of PEDOT:PSS and blocking hole from tetraoctylammonium bromide (TOAB) respectively for PVSCs and PLEDs. The imbalance carrier transporting will cause charge accumulation at the interface to create recombination loss. PEDOT:PSS, which is the common hole transporting layer, was treated via CuBr2 to reduce its resistivity from 115.6 to 0.082 Ω.cm. The reduction of resistivity results in the 1.11 times enhancement of Jsc with the best PCE of 14.59%. The 1.86 times enhancement of Jsc from CuBr2 treated low conductivity of PEDOT:PSS, indicating the enhancement of Jsc from the carrier balance transporting. The results of XPS reveal the conductivity enhancement of PEDOT:PSS from the insulating PSS removal from the increase in the ratio between PEDOT and PSS. In PLED, most luminescence layers are p-type semiconductors. To enhance the exciton formation, sufficient hole blocking is important. Accordingly, TOAB was applied as electron injection layer (EIL) for enhancing device the performance. Three luminescence layers, G-PF, SY-PPV, and P3HT with various energy levels were used to investigate the hole blocking ability of TOAB. Compared with Ca based devices, TOAB based PLEDs shows higher current efficiency due to its hole blocking ability. Investigating the current ratio of Al and TOAB/Al devices, the hole blocking ability of TOAB increase with the decrease in the hole injection barriers. The P3HT-based device shows highest light intensity (401 cd m-2) due to sufficient hole blocking capability to form exciton.
    In the third part, smooth surface morphology was applied via blending three EILs including polyethylenimine ethoxylated (PEIE), poly (vinylpyrrolidone) (PVP), and tetraoctylammonium bromide (TOAB). The AFM images show that TOAB significantly reduces the roughness of the aggregated PEIE:PVP film. It is corroborated from XPS results that the additional hydrogen bonding formed from the interaction between PEIE and PVP, being reduced with the addition of TOAB into the thin film. Accordingly, Ternary device respectively shows 1.12 and 1.09 times the current efficiency and the power efficiency of PEIE device (11.24 cd m-2 and 10.69 lm W-1), which is higher than that of in the PEIE:PVP (Binary) device (11.96 cd m-2 and 10.14 lm W-1).

    Abstract I 中文摘要 III 致謝 V Table of Content VI List of Figures VIII List of Tables XI List of Symbol XII List of Acronym XIII Chapter 1 Introduction 1 1.1 Inorganic/Organic optoelectronics devices 1 1.1.1 Introduction to perovskite solar cells 1 1.1.2 Introduction to polymer light-emitting diodes 7 1.2 Charge injection and transport in organic optoelectronic devices 9 1.2.1 Energy level diagram 9 1.2.2 Shockley barrier and Ohmic contact 10 1.2.3 Injecting and space charge limiting current 12 1.2.4 Energy level shift by interfacial dipole 13 1.2.5 The working theorem of PLEDs and PVSCs 16 1.3 Energy level alignment for reducing barrier 20 1.3.1 Low-lying HOMO materials for efficient hole extraction/injection in PVSCs and PLEDs 20 1.3.2 High-lying LUMO materials for efficient electron extraction/injection in PVSCs and PLEDs 23 1.3.3 Modification for work function of electrode via interfacial dipole 25 1.3.3.1 Reducing work function of cathode via interfacial dipole for PLED 25 1.3.3.2 Increasing work function of anode via interfacial dipole for PLED 29 1.4 Balance carrier transporting for high efficient devices 31 1.4.1 Enhancing the conductivity of PEDOT:PSS via solvent and ionic molecular treatment 31 1.4.2 Carrier blocking for enhancing device performance 33 1.5 Smooth surface morphology for lowing bulk/interface resistance 36 1.5.1 Seed layer for uniform metal thin film 36 1.5.2 Binary interfacial layers for improving interface of devices 39 1.6 Motivation 41 Chapter 2 Energy level alignment for reducing barrier 42 2.1 Enhancing the hole injection ability of indium tin oxide via ammonium salts in polymer light-emitting diodes 42 2.1.1 Introduction 42 2.1.2 Experimental 43 2.1.3 Results and discussion 44 2.1.4 Conclusion 52 2.2 High-performance hole-transporting layer-free conventional perovskite/fullerene heterojunction thin-film solar cells 53 2.2.1 Introduction 53 2.2.2 Experimental 55 2.2.3 Results and discussion 56 2.2.4 Conclusion 70 Chapter 3 Balanced carrier transporting for high efficient devices 71 3.1 Enhancing hole mobility via CuBr2 treated PEDOT:PSS for high efficiency semi-transparent perovskite solar cells 71 3.1.1 Introduction 71 3.1.2 Experimental 72 3.1.3 Results and discussion 73 3.1.4 Conclusion 84 3.2 Role of self-assembled tetraoctylammonium bromide on various conjugated polymers in polymer light-emitting diodes 85 3.2.1 Introduction 85 3.2.2 Experimental 85 3.2.3 Results and Discussion 86 3.2.4 Conclusion 96 Chapter 4 Smooth surface morphology for reducing leakage current 97 4.1 Introduction 97 4.2 Experimental 98 4.3 Results and discussion 100 4.4 Conclusion 117 Chapter 5 Summary and suggestions 118 Reference 120 Curriculum Vitae 129

    1. A. Kojima, K. Teshima, Y. Shirai and T. Miyasaka, J. Am. Chem. Soc., 2009, 131, 6050-6051.
    2. M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami and H. J. Snaith, Science, 2012, 338, 643-647.
    3. G. Xing, N. Mathews, S. Sun, S. S. Lim, Y. M. Lam, M. Gratzel, S. Mhaisalkar and T. C. Sum, Science, 2013, 342, 344-347.
    4. B. Wang, X. Xiao and T. Chen, Nanoscale, 2014, 6, 12287-12297.
    5. J. H. Noh, S. H. Im, J. H. Heo, T. N. Mandal and S. I. Seok, Nano Lett., 2013, 13, 1764-1769.
    6. G. E. Eperon, V. M. Burlakov, P. Docampo, A. Goriely and H. J. Snaith, Adv. Funct. Mater., 2014, 24, 151-157.
    7. J. Y. Jeng, Y. F. Chiang, M. H. Lee, S. R. Peng, T. F. Guo, P. Chen and T. C. Wen, Adv. Mater., 2013, 25, 3727-3732.
    8. P. Docampo, J. M. Ball, M. Darwich, G. E. Eperon and H. J. Snaith, Nat. Commun., 2013, 4, 2761.
    9. M. Liu, M. B. Johnston and H. J. Snaith, Nature, 2013, 501, 395-398.
    10. J. Burschka, N. Pellet, S. J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin and M. Gratzel, Nature, 2013, 499, 316-319.
    11. N. J. Jeon, J. H. Noh, Y. C. Kim, W. S. Yang, S. Ryu and S. I. Seok, Nat. Mater., 2014, 13, 897-903.
    12. N. J. Jeon, J. H. Noh, W. S. Yang, Y. C. Kim, S. Ryu, J. Seo and S. I. Seok, Nature, 2015, 517, 476-480.
    13. W. S. Yang, J. H. Noh, N. J. Jeon, Y. C. Kim, S. Ryu, J. Seo and S. I. Seok, Science, 2015, 348, 1234-1237.
    14. M. Saliba, T. Matsui, J. Y. Seo, K. Domanski, J. P. Correa-Baena, M. K. Nazeeruddin, S. M. Zakeeruddin, W. Tress, A. Abate, A. Hagfeldt and M. Grätzel, Energ. Environ. Sci., 2016, 9, 1989-1997.
    15. S. T. Williams, F. Zuo, C. C. Chueh, C. Y. Liao, P. W. Liang and A. K. Y. Jen, ACS Nano, 2014, 8, 10640-10654.
    16. J. H. Im, I. H. Jang, N. Pellet, M. Gratzel and N. G. Park, Nat. Nanotechnol., 2014, 9, 927-932.
    17. H. Ishii, K. Sugiyama, E. Ito and K. Seki, Adv. Mater., 1999, 11, 605-625.
    18. J. D. Servaites, M. A. Ratner and T. J. Marks, Energ. Environ. Sci., 2011, 4, 4410-4422.
    19. A. Miyata, A. Mitioglu, P. Plochocka, O. Portugall, J. T. W. Wang, S. D. Stranks, H. J. Snaith and R. J. Nicholas, Nat. Phys., 2015, 11, 582-587.
    20. J. You, L. Meng, T. B. Song, T. F. Guo, Y. M. Yang, W. H. Chang, Z. Hong, H. Chen, H. Zhou, Q. Chen, Y. Liu, N. De Marco and Y. Yang, Nat. Nanotechnol., 2016, 11, 75-81.
    21. K. C. Wang, J. Y. Jeng, P. S. Shen, Y. C. Chang, E. W. Diau, C. H. Tsai, T. Y. Chao, H. C. Hsu, P. Y. Lin, P. Chen, T. F. Guo and T. C. Wen, Sci. Rep., 2014, 4, 4756.
    22. A. S. Subbiah, A. Halder, S. Ghosh, N. Mahuli, G. Hodes and S. K. Sarkar, J. Phys. Chem. Lett., 2014, 5, 1748-1753.
    23. J. W. Jung, C. C. Chueh and A. K. Y. Jen, Adv. Energy Mater., 2015, 5, 1500486.
    24. D. Zhao, M. Sexton, H.-Y. Park, G. Baure, J. C. Nino and F. So, Adv. Energy Mater., 2015, 5, 1500436.
    25. J. W. Jung, C. C. Chueh and A. K. Jen, Adv. Mater., 2015, 27, 7874-7880.
    26. W. Y. Chen, L. L. Deng, S. M. Dai, X. Wang, C. B. Tian, X. X. Zhan, S. Y. Xie, R. B. Huang and L. S. Zheng, J. Mater. Chem. A, 2015, 3, 19353-19359.
    27. J. Y. Jeng, K. C. Chen, T. Y. Chiang, P. Y. Lin, T. D. Tsai, Y. C. Chang, T. F. Guo, P. Chen, T. C. Wen and Y. J. Hsu, Adv. Mater., 2014, 26, 4107-4113.
    28. Y. H. Niu, M. S. Liu, J. W. Ka, J. Bardeker, M. T. Zin, R. Schofield, Y. Chi and A. K. Y. Jen, Adv. Mater., 2007, 19, 300-304.
    29. S. A. Van Slyke, C. H. Chen and C. W. Tang, Appl. Phys. Lett., 1996, 69, 2160-2162.
    30. H. Yan, Q. Huang, J. Cui, J. G. C. Veinot, M. M. Kern and T. J. Marks, Adv. Mater., 2003, 15, 835-838.
    31. P. W. Liang, C. C. Chueh, S. T. Williams and A. K. Y. Jen, Adv. Energy Mater., 2015, 5, 1402321.
    32. C. H. Chiang, Z. L. Tseng and C. G. Wu, J. Mater. Chem. A, 2014, 2, 15897-15903.
    33. C. Y. Chang, K. T. Lee, W. K. Huang, H. Y. Siao and Y. C. Chang, Chem. Mater., 2015, 27, 5122-5130.
    34. C. P. Keszthelyi, H. Tachikawa and A. J. Bard, J. Am. Chem. Soc., 1972, 94, 1522-1527.
    35. S. Janietz and A. Wedel, Adv. Mater., 1997, 9, 403-407.
    36. O. Renault, O. V. Salata, M. Etchells, P. J. Dobson and V. Christou, Thin Solid Films, 2000, 379, 195-198.
    37. Y. M. Cheng, G. H. Lee, P. T. Chou, L. S. Chen, Y. Chi, C. H. Yang, Y. H. Song, S. Y. Chang, P. I. Shih and C. F. Shu, Adv. Funct. Mater., 2008, 18, 183-194.
    38. H. Cho, S. H. Jeong, M. H. Park, Y. H. Kim, C. Wolf, C. L. Lee, J. H. Heo, A. Sadhanala, N. Myoung, S. Yoo, S. H. Im, R. H. Friend and T. W. Lee, Science, 2015, 350, 1222-1225.
    39. T. M. Brown, R. H. Friend, I. S. Millard, D. J. Lacey, J. H. Burroughes and F. Cacialli, Appl. Phys. Lett., 2000, 77, 3096.
    40. H. Heil, J. Steiger, S. Karg, M. Gastel, H. Ortner, H. von Seggern and M. Stoeßel, J. Appl. Phys., 2001, 89, 420.
    41. Q. Xu, J. Ouyang, Y. Yang, T. Ito and J. Kido, Appl. Phys. Lett., 2003, 83, 4695.
    42. Y. Cao, G. Yu and A. J. Heeger, Adv. Mater., 1998, 10, 917-920.
    43. F. Huang, H. Wu, D. Wang, W. Yang and Y. Cao, Chem. Mater., 2004, 16, 708-716.
    44. C. Hoven, R. Yang, A. Garcia, A. J. Heeger, T. Q. Nguyen and G. C. Bazan, J. Am. Chem. Soc., 2007, 129, 10976-10977.
    45. F. Huang, Y. H. Niu, Y. Zhang, J. W. Ka, M. S. Liu and A. K. Y. Jen, Adv. Mater., 2007, 19, 2010-2014.
    46. Y. Zhang, F. Huang, Y. Chi and A. K. Y. Jen, Adv. Mater., 2008, 20, 1565-1570.
    47. F. Huang, Y. Zhang, M. S. Liu and A. K. Y. Jen, Adv. Funct. Mater., 2009, 19, 2457-2466.
    48. C. Duan, L. Wang, K. Zhang, X. Guan and F. Huang, Adv. Mater., 2011, 23, 1665-1669.
    49. C. Min, C. Shi, W. Zhang, T. Jiu, J. Chen, D. Ma and J. Fang, Angew. Chem. Int. Ed. Engl., 2013, 52, 3417-3420.
    50. S. N. Hsieh, S. W. Hsiao, T. Y. Chen, C. Y. Li, C. H. Lee, T. F. Guo, Y. J. Hsu, T. L. Lin, Y. Wei and T. C. Wen, J. Mater. Chem., 2011, 21, 8715-8720.
    51. X. Y. Deng, W. M. Lau, K. Y. Wong, K. H. Low, H. F. Chow and Y. Cao, Appl. Phys. Lett., 2004, 84, 3522.
    52. T. F. Guo, F. S. Yang, Z. J. Tsai, T. C. Wen, S.-N. Hsieh and Y. S. Fu, Appl. Phys. Lett., 2005, 87, 013504.
    53. T. F. Guo, F. S. Yang, Z. J. Tsai, T. C. Wen, C. I. Wu and C. T. Chung, Appl. Phys. Lett., 2006, 89, 053507.
    54. T. F. Guo, F. S. Yang, Z. J. Tsai, T. C. Wen, S. N. Hsieh, Y. S. Fu and C. T. Chung, Appl. Phys. Lett., 2006, 88, 113501.
    55. T. F. Guo, F. S. Yang, Z. J. Tsai, G. W. Feng, T. C. Wen, S. N. Hsieh, C. T. Chung and C. I. Wu, Appl. Phys. Lett., 2006, 89, 051103.
    56. T. H. Lee, J. C. A. Huang, G. L. v. Pakhomov, T. F. Guo, T. C. Wen, Y. S. Huang, C. C. Tsou, C. T. Chung, Y. C. Lin and Y. J. Hsu, Adv. Funct. Mater., 2008, 18, 3036-3042.
    57. Y. Zhou, C. Fuentes-Hernandez, J. Shim, J. Meyer, A. J. Giordano, H. Li, P. Winget, T. Papadopoulos, H. Cheun, J. Kim, M. Fenoll, A. Dindar, W. Haske, E. Najafabadi, T. M. Khan, H. Sojoudi, S. Barlow, S. Graham, J. L. Brédas, S. R. Marder, A. Kahn and B. Kippelen, Science, 2012, 336, 327-332.
    58. Y. J. Lin, C. F. You, W. Y. Chou and S. T. Lin, Electrochem. Solid-State Lett., 2006, 9, G302.
    59. J. A. Bardecker, H. Ma, T. Kim, F. Huang, M. S. Liu, Y. J. Cheng, G. Ting and A. K. Y. Jen, Adv. Funct. Mater., 2008, 18, 3964-3971.
    60. M. G. Helander, Z. B. Wang, J. Qiu, M. T. Greiner, D. P. Puzzo, Z. W. Liu and Z. H. Lu, Science, 2011, 332, 944-947.
    61. H. Y. Wang, Y. Wang, M. Yu, J. Han, Z. X. Guo, X. C. Ai, J. P. Zhang and Y. Qin, PCCP, 2016, 18, 12128-12134.
    62. D. Alemu, H. Y. Wei, K. C. Ho and C. W. Chu, Energ. Environ. Sci., 2012, 5, 9662.
    63. Y. Xia and J. Ouyang, Macromolecules, 2009, 42, 4141-4147.
    64. Y. Tao, Q. Wang, C. Yang, J. Qin and D. Ma, ACS Appl. Mater. Interfaces, 2010, 2, 2813-2818.
    65. H. J. Bolink, E. Coronado, J. Orozco and M. Sessolo, Adv. Mater., 2009, 21, 79-82.
    66. D. Kabra, L. P. Lu, M. H. Song, H. J. Snaith and R. H. Friend, Adv. Mater., 2010, 22, 3194-3198.
    67. L. P. Lu, D. Kabra and R. H. Friend, Adv. Funct. Mater., 2012, 22, 4165-4171.
    68. E. F. Gomez, V. Venkatraman, J. G. Grote and A. J. Steckl, Sci. Rep., 2014, 4, 7105.
    69. O. Malinkiewicz, A. Yella, Y. H. Lee, G. M. Espallargas, M. Graetzel, M. K. Nazeeruddin and H. J. Bolink, Nat. Photonics, 2013, 8, 128-132.
    70. H. J. Jhuo, P. N. Yeh, S. H. Liao, Y. L. Li, S. Sharma and S. A. Chen, J. Mater. Chem. A, 2015, 3, 9291-9297.
    71. Y. Xia, K. Sun, J. Chang and J. Ouyang, J. Mater. Chem. A, 2015, 3, 15897-15904.
    72. J. Liu, C. Gao, L. Luo, Q. Ye, X. He, L. Ouyang, X. Guo, D. Zhuang, C. Liao, J. Mei and W. Lau, J. Mater. Chem. A, 2015, 3, 11750-11755.
    73. T. P. Nguyen, J. Ip, P. Jolinat and P. Destruel, Appl. Surf. Sci., 2001, 172, 75-83.
    74. S. Schubert, J. Meiss, L. Müller Meskamp and K. Leo, Adv. Energy Mater., 2013, 3, 438-443.
    75. J. Zou, C. Z. Li, C. Y. Chang, H. L. Yip and A. K. Jen, Adv. Mater., 2014, 26, 3618-3623.
    76. C. Y. Chang, Y. C. Chang, W. K. Huang, K. T. Lee, A. C. Cho and C. C. Hsu, Chem. Mater., 2015, 27, 7119-7127.
    77. M. H. Park, J. H. Li, A. Kumar, G. Li and Y. Yang, Adv. Funct. Mater., 2009, 19, 1241-1246.
    78. T. Chiba, Y. J. Pu, M. Hirasawa, A. Masuhara, H. Sasabe and J. Kido, ACS Appl. Mater. Interfaces, 2012, 4, 6104-6108.
    79. H. C. Chen, S. W. Lin, J. M. Jiang, Y. W. Su and K. H. Wei, ACS Appl. Mater. Interfaces, 2015, 7, 6273-6281.
    80. J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns and A. B. Holmes, Nature, 1990, 347, 539-541.
    81. S. Reineke, F. Lindner, G. Schwartz, N. Seidler, K. Walzer, B. Lussem and K. Leo, Nature, 2009, 459, 234-238.
    82. I. D. Parker, J. Appl. Phys., 1994, 75, 1656-1666.
    83. S. Karg, J. C. Scott, J. R. Salem and M. Angelopoulos, Synth. Met., 1996, 80, 111-117.
    84. Y. Cao, G. Yu, C. Zhang, R. Menon and A. J. Heeger, Synth. Met., 1997, 87, 171-174.
    85. C. Y. Li, T. C. Wen, T. F. Guo and S. S. Hou, Polymer, 2008, 49, 957-964.
    86. S. A. Mauger and A. J. Moule, Org. Electron., 2011, 12, 1948-1956.
    87. S. Khodabakhsh, D. Poplavskyy, S. Heutz, J. Nelson, D. D. C. Bradley, H. Murata and T. S. Jones, Adv. Funct. Mater., 2004, 14, 1205-1210.
    88. T. Xiong and D. Ma, J. Appl. Phys., 2008, 104, 064506.
    89. I. H. Campbell, J. D. Kress, R. L. Martin, D. L. Smith, N. N. Barashkov and J. P. Ferraris, Appl. Phys. Lett., 1997, 71, 3528-3530.
    90. K. H. Lee, H. W. Jang, K. B. Kim, Y. H. Tak and J. L. Lee, J. Appl. Phys., 2004, 95, 586-590.
    91. D. Liu and T. L. Kelly, Nat. Photonics, 2014, 8, 133-138.
    92. H. Zhou, Q. Chen, G. Li, S. Luo, T.-b. Song, H. S. Duan, Z. Hong, J. You, Y. Liu and Y. Yang, Science, 2014, 345, 542-546.
    93. L. Etgar, P. Gao, Z. Xue, Q. Peng, A. K. Chandiran, B. Liu, M. K. Nazeeruddin and M. Grätzel, J. Am. Chem. Soc., 2012, 134, 17396-17399.
    94. W. A. Laban and L. Etgar, Energ. Environ. Sci., 2013, 6, 3249-3253.
    95. A. Mei, X. Li, L. Liu, Z. Ku, T. Liu, Y. Rong, M. Xu, M. Hu, J. Chen, Y. Yang, M. Grätzel and H. Han, Science, 2014, 345, 295-298.
    96. S. Aharon, S. Gamliel, B. E. Cohen and L. Etgar, PCCP, 2014, 16, 10512-10518.
    97. F. Hao, C. C. Stoumpos, Z. Liu, R. P. H. Chang and M. G. Kanatzidis, J. Am. Chem. Soc., 2014, 136, 16411-16419.
    98. J. Shi, Y. Luo, H. Wei, J. Luo, J. Dong, S. Lv, J. Xiao, Y. Xu, L. Zhu, X. Xu, H. Wu, D. Li and Q. Meng, ACS Appl. Mater. Interfaces, 2014, 6, 9711-9718.
    99. J. You, Z. Hong, Y. Yang, Q. Chen, M. Cai, T. B. Song, C. C. Chen, S. Lu, Y. Liu, H. Zhou and Y. Yang, ACS Nano, 2014, 8, 1674-1680.
    100. Z. Xiao, Q. Dong, C. Bi, Y. Shao, Y. Yuan and J. Huang, Adv. Mater., 2014, 26, 6503-6509.
    101. C. C. Chueh, C. Y. Liao, F. Zuo, S. T. Williams, P. W. Liang and A. K. Y. Jen, J. Mater. Chem. A, 2015, 3, 9058-9062.
    102. O. Malinkiewicz, A. Yella, Y. H. Lee, G. M. Espallargas, M. Graetzel, M. K. Nazeeruddin and H. J. Bolink, Nat. Photonics, 2014, 8, 128-132.
    103. D. Liu, J. Yang and T. L. Kelly, J. Am. Chem. Soc., 2014, 136, 17116-17122.
    104. Q. Chen, H. Zhou, T. B. Song, S. Luo, Z. Hong, H. S. Duan, L. Dou, Y. Liu and Y. Yang, Nano Lett., 2014, 14, 4158-4163.
    105. S. J. Kerber, J. J. Bruckner, K. Wozniak, S. Seal, S. Hardcastle and T. L. Barr, J. Vac. Sci. Technol. A, 1996, 14, 1314-1320.
    106. J. S. Kim, P. K. H. Ho, D. S. Thomas, R. H. Friend, F. Cacialli, G. W. Bao and S. F. Y. Li, Chem. Phys. Lett., 1999, 315, 307-312.
    107. X. Liu, C. Wang, L. Lyu, C. Wang, Z. Xiao, C. Bi, J. Huang and Y. Gao, PCCP, 2015, 17, 896-902.
    108. C. H. Wu, C. Y. Chin, T. Y. Chen, S. N. Hsieh, C. H. Lee, T. F. Guo, A. K. Y. Jen and T. C. Wen, J. Mater. Chem. A, 2013, 1, 2582-2587.
    109. K. W. Tsai, T. H. Lee, J. H. Wu, J. Y. Jhou, W. S. Huang, S. N. Hsieh, T. C. Wen, T. F. Guo and J. C. A. Huang, Org. Electron., 2013, 14, 1376-1382.
    110. Y. F. Chang, C. Y. Chen, F. T. Luo, Y. C. Chao, H. F. Meng, H. W. Zan, H. W. Lin, S. F. Horng, T. C. Chao, H. C. Yeh and M. R. Tseng, Org. Electron., 2012, 13, 388-393.
    111. T. Xiong, F. Wang, X. Qiao and D. Ma, Appl. Phys. Lett., 2008, 93, 123310.
    112. J. Kim, H. Lee, S. J. Lee, W. J. da Silva, A. R. bin Mohd Yusoff and J. Jang, J. Mater. Chem. A, 2015, 3, 22035-22042.
    113. Y. Zhang, L. Chen, X. Hu, L. Zhang and Y. Chen, Sci. Rep., 2015, 5, 12839.
    114. S. M. Lin and T. C. Wen, J. Electrochem. Soc., 1993, 140, 2265-2271.
    115. S. M. Lin and T. C. Wen, J. Appl. Electrochem., 1993, 23, 487-494.
    116. Y. J. Li , C. C. Chang and T. C. Wen J. Appl. Electrochem., 1997, 27, 227-234.
    117. C. H. Yang, Y. J. Li and T. C. Wen, Ind. Eng. Chem. Res., 1997, 36, 1614-1621.
    118. C. H. Yang, H. J. Yang, T. C. Wen, M. S. Wu and J. S. Chang, Polymer, 1999, 40, 871-885.

    下載圖示 校內:2019-06-01公開
    校外:2019-06-01公開
    QR CODE